Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1975 Jun;72(6):2049–2053. doi: 10.1073/pnas.72.6.2049

Tertiary Hydrogen Bonds in the Solution Structure of Transfer RNA

B R Reid *, N S Ribeiro *, G Gould *, G Robillard †,, C W Hilbers †,§, R G Shulman
PMCID: PMC432690  PMID: 1094451

Abstract

The high resolution nuclear magnetic resonance (NMR) spectra of hydrogen-bonded protons in four tRNAs have been studied at 270 MHz. The relative intensity of the resonances between -11 ppm and -15 ppm of Escherichia coli tRNA1Val indicate that there are 26 ± 3 protons, while only 20 are expected from secondary structure Watson-Crick hydrogen bonds in the cloverleaf structure. Several possible candidates for these extra resonances are suggested by tertiary interactions observed in recent crystallographic studies.

Of the four tRNAs studied, three, e.g., E. coli tRNA1Val, E. coli tRNAArg and E. coli tRNAPhe have one “GU pair” in their cloverleaf structure, while the fourth, yeast tRNAAsp, has three “GU pairs” and one “GΨ pair”. Correlating these with the NMR spectra in the -10 ppm to -11 ppm region allows us to conclude that the “GU pairs” are not hydrogen-bonded by tautomerization to the lactim form.

At the very low field region, near -14.9 ppm, the three E. coli tRNAs show a single resonance which is attributed to the 4-thiouracil 8 to adenine 14 hydrogen bond of the tertiary structure, by analogy with the recent crystal structure of yeast tRNAPhe. This assignment is confirmed by the disappearance of this resonance after treatment with cyanogen bromide.

Keywords: base pairing, high resolution nuclear magnetic resonance

Full text

PDF
2049

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alden C. J., Arnott S. Nucleotide conformations in codon-anticodon interactions. Biochem Biophys Res Commun. 1973 Aug 6;53(3):806–811. doi: 10.1016/0006-291x(73)90164-2. [DOI] [PubMed] [Google Scholar]
  2. Barrell B. G., Sanger F. The sequence of phenylalanine tRNA from E. coli. FEBS Lett. 1969 Jun;3(4):275–278. doi: 10.1016/0014-5793(69)80157-2. [DOI] [PubMed] [Google Scholar]
  3. Crothers D. M., Cole P. E., Hilbers C. W., Shulman R. G. The molecular mechanism of thermal unfolding of Escherichia coli formylmethionine transfer RNA. J Mol Biol. 1974 Jul 25;87(1):63–88. doi: 10.1016/0022-2836(74)90560-9. [DOI] [PubMed] [Google Scholar]
  4. Gangloff J., Keith G., Ebel J. P., Dirheimer G. The primary structure of aspartate transfer ribonucleic acid from brewer's yeast. I. Complete digestion with pancreatic ribonuclease and T 1 ribonuclease. Biochim Biophys Acta. 1972 Jan 31;259(2):198–209. [PubMed] [Google Scholar]
  5. Hilbers C. W., Shulman R. G. Assignment of the hydrogen bonded proton resonances in (Escherichia coli) tRNAGlu by sequential melting. Proc Natl Acad Sci U S A. 1974 Aug;71(8):3239–3242. doi: 10.1073/pnas.71.8.3239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Katz L., Penman S. Association by hydrogen bonding of free nucleosides in non-aqueous solution. J Mol Biol. 1966 Jan;15(1):220–231. doi: 10.1016/s0022-2836(66)80222-x. [DOI] [PubMed] [Google Scholar]
  7. Kearns D. R., Patel D. J., Shulman R. G. High resolution nuclear magnetic resonance studies of hydrogen bonded protons of tRNA in water. Nature. 1971 Jan 29;229(5283):338–339. doi: 10.1038/229338a0. [DOI] [PubMed] [Google Scholar]
  8. Kearns D. R., Patel D., Shulman R. G., Yamane T. High resolution nuclear magnetic resonance study of base pairing in four purified transfer RNA molecules. J Mol Biol. 1971 Oct 14;61(1):265–270. doi: 10.1016/0022-2836(71)90224-5. [DOI] [PubMed] [Google Scholar]
  9. Kim S. H., Suddath F. L., Quigley G. J., McPherson A., Sussman J. L., Wang A. H., Seeman N. C., Rich A. Three-dimensional tertiary structure of yeast phenylalanine transfer RNA. Science. 1974 Aug 2;185(4149):435–440. doi: 10.1126/science.185.4149.435. [DOI] [PubMed] [Google Scholar]
  10. Kimura F., Harada F., Nishimura S. Primary sequence of tRNA-Val-1 from Escherichia coli B. II. Isolation of large fragments by limited digestion with RNases, and overlapping of fragments to reduce the total primary sequence. Biochemistry. 1971 Aug 17;10(17):3277–3283. doi: 10.1021/bi00793a018. [DOI] [PubMed] [Google Scholar]
  11. Lightfoot D. R., Wong K. L., Kearns D. R., Reid B. R., Shulman R. G. Assignment of the low field proton nuclear magnetic resonance spectrum of yeast phenylalanine transfer RNA to specific base pairs. J Mol Biol. 1973 Jun 25;78(1):71–89. doi: 10.1016/0022-2836(73)90429-4. [DOI] [PubMed] [Google Scholar]
  12. Pearson R. L., Weiss J. F., Kelmers A. D. Improved separation of transfer RNA's on polychlorotrifuoroethylene-supported reversed-phase chromatography columns. Biochim Biophys Acta. 1971 Feb 11;228(3):770–774. doi: 10.1016/0005-2787(71)90748-9. [DOI] [PubMed] [Google Scholar]
  13. Reid B. R. Selective inactivation of E. coli tRNA by ethylenimine. Biochem Biophys Res Commun. 1968 Nov 25;33(4):627–635. doi: 10.1016/0006-291x(68)90342-2. [DOI] [PubMed] [Google Scholar]
  14. Robertus J. D., Ladner J. E., Finch J. T., Rhodes D., Brown R. S., Clark B. F., Klug A. Structure of yeast phenylalanine tRNA at 3 A resolution. Nature. 1974 Aug 16;250(467):546–551. doi: 10.1038/250546a0. [DOI] [PubMed] [Google Scholar]
  15. Shulman R. G., Hilbers C. W. Ring-current shifts in the 300 MHz nuclear magnetic resonance spectra of six purified transfer RNA molecules. J Mol Biol. 1973 Jun 25;78(1):57–69. doi: 10.1016/0022-2836(73)90428-2. [DOI] [PubMed] [Google Scholar]
  16. Walker R. T., RajBhandary U. L. Studies on polynucleotides. CI. Escherichia coli tyrosine and formylmethionine transfer ribonucleic acids: effect of chemical modification of 4-thiouridine to uridine on their biological properties. J Biol Chem. 1972 Aug 10;247(15):4879–4892. [PubMed] [Google Scholar]
  17. Wimmer E., Maxwell I. H., Tener G. M. A simple method for isolating highly purified yeast phenylalanine transfer ribonucleic acid. Biochemistry. 1968 Jul;7(7):2623–2628. doi: 10.1021/bi00847a026. [DOI] [PubMed] [Google Scholar]
  18. Wong Y. P., Kearns D. R., Reid B. R., Shulman R. G. Investigation of exchangeable protons and the extent of base pairings in yeast phenylalanine transfer RNA by high resolution nuclear magnetic resonance. J Mol Biol. 1972 Dec 30;72(3):725–740. doi: 10.1016/0022-2836(72)90187-8. [DOI] [PubMed] [Google Scholar]
  19. Yaniv M., Barrell B. G. Nucleotide sequence of E. coli B tRNA1-Val. Nature. 1969 Apr 19;222(5190):278–279. doi: 10.1038/222278a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES