Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1975 Jun;72(6):2135–2139. doi: 10.1073/pnas.72.6.2135

Changes in cyclic nucleotide metabolism in aorta and heart of neurogenically hypertensive rats: possible trigger mechanism of hypertension.

M S Amer, N Doba, D J Reis
PMCID: PMC432711  PMID: 237270

Abstract

Changes in cyclic nucleotide metabolism similar to those characteristic of the chronic forms of hypertension were observed in an acute neurogenic form of hypertension in rats produced by electrolytic lesions of the nucleus tractus solitarii. These changes that were evident 2 hr after the lesions were made included decreased cyclic AMP levels in the heart, increased cGMP:cAMP ratio, cAMP phosphodiesterase (3':5'-cAMP 5'-nucleotidohydrolase, EC 3.1.4.17) and guanylyl cyclase (GTP pyrophosphate-lyase (cyclizing), EC 4.6.1.2) activities in the aorta and decreased snesitivity of adenylyl cyclase (ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1) in both the aorta and heart to stimulation by the beta-adrenergic stimulant isoproterenol. These changes appear to depend on catecholamine release and are not due to mechanical distortion secondary to the increased arterial pressure. These studies provide biochemical support to the concept that the sympathetic nervous system may play a critical role in the initiation of the hypertensive syndrome and that chronic hypertension could result from the fixation of the biochemical effects of increased sympathetic activity.

Full text

PDF
2135

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amer M. S. Cyclic adenosine monophosphate and hypertension in rats. Science. 1973 Feb 23;179(4075):807–809. doi: 10.1126/science.179.4075.807. [DOI] [PubMed] [Google Scholar]
  2. Amer M. S. Cyclic guanosine 3',5'-monophosphate and gallbladder contraction. Gastroenterology. 1974 Aug;67(2):333–337. [PubMed] [Google Scholar]
  3. Amer M. S., Gomoll A. W., Perhach J. L., Jr, Ferguson H. C., McKinney G. R. Aberrations of cyclic nucleotide metabolism in the hearts and vessels of hypertensive rats. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4930–4934. doi: 10.1073/pnas.71.12.4930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ball J. H., Kaminsky N. I., Hardman J. G., Broadus A. E., Sutherland E. W., Liddle G. W. Effects of catecholamines and adrenergic-blocking agents on plasma and urinary cyclic nucleotides in man. J Clin Invest. 1972 Aug;51(8):2124–2129. doi: 10.1172/JCI107019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Deguchi T., Axelrod J. Supersensitivity and subsensitivity of the beta-adrenergic receptor in pineal gland regulated by catecholamine transmitter. Proc Natl Acad Sci U S A. 1973 Aug;70(8):2411–2414. doi: 10.1073/pnas.70.8.2411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Doba N., Reis D. J. Role of central and peripheral adrenergic mechanisms in neurogenic hypertension produced by brainstem lesions in rat. Circ Res. 1974 Mar;34(3):293–301. doi: 10.1161/01.res.34.3.293. [DOI] [PubMed] [Google Scholar]
  7. Finch L., Leach G. D. A comparison of the effects of 6-hydroxydopamine immunosympathectomy and reserpine on the cardiovascular reactivity in the rat. J Pharm Pharmacol. 1970 May;22(5):354–360. doi: 10.1111/j.2042-7158.1970.tb08537.x. [DOI] [PubMed] [Google Scholar]
  8. Finch L., Leach G. D. Effects of 6-hydroxydopamine on the perfused rat mesentery preparation. J Pharm Pharmacol. 1970 Jul;22(7):543–544. doi: 10.1111/j.2042-7158.1970.tb10565.x. [DOI] [PubMed] [Google Scholar]
  9. Folkow B. The haemodynamic consequences of adaptive structural changes of the resistance vessels in hypertension. Clin Sci. 1971 Jul;41(1):1–12. doi: 10.1042/cs0410001. [DOI] [PubMed] [Google Scholar]
  10. Goldberg N. D., O'Dea R. F., Haddox M. K. Cyclic GMP. Adv Cyclic Nucleotide Res. 1973;3:155–223. [PubMed] [Google Scholar]
  11. Henry J. P., Meehan J. P., Stephens P. M. The use of psychosocial stimuli to induce prolonged systolic hypertension in mice. Psychosom Med. 1967 Sep-Oct;29(5):408–432. doi: 10.1097/00006842-196709000-00002. [DOI] [PubMed] [Google Scholar]
  12. Herd J. A., Morse W. H., Kelleher R. T., Jones L. G. Arterial hypertension in the squirrel monkey during behavioral experiments. Am J Physiol. 1969 Jul;217(1):24–29. doi: 10.1152/ajplegacy.1969.217.1.24. [DOI] [PubMed] [Google Scholar]
  13. Koch-Weser J. Sympathetic activity in essential hypertension. N Engl J Med. 1973 Mar 22;288(12):627–629. doi: 10.1056/NEJM197303222881209. [DOI] [PubMed] [Google Scholar]
  14. Lamprecht F., Williams R. B., Kopin I. J. Serum dopamine-beta-hydroxylase during development of immobilization-induced hypertension. Endocrinology. 1973 Mar;92(3):953–956. doi: 10.1210/endo-92-3-953. [DOI] [PubMed] [Google Scholar]
  15. Louis W. J., Doyle A. E., Anavekar S. Plasma norepinephrine levels in essential hyoertension. N Engl J Med. 1973 Mar 22;288(12):599–601. doi: 10.1056/NEJM197303222881203. [DOI] [PubMed] [Google Scholar]
  16. Schultz G., Hardman J. G., Schultz K., Davis J. W., Sutherland E. W. A new enzymatic assay for guanosine 3':5'-cyclic monophosphate and its application to the ductus deferens of the rat. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1721–1725. doi: 10.1073/pnas.70.6.1721. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES