Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1975 Jun;72(6):2165–2169. doi: 10.1073/pnas.72.6.2165

Mouse SmI cortex: qualitative and quantitative classification of golgi-impregnated barrel neurons.

T A Woolsey, M L Dierker, D F Wann
PMCID: PMC432717  PMID: 1056021

Abstract

The neurons in layer IV of the mouse somatosensory cortex are arranged in a remarkably consistent pattern of multicellular cytoarchitectonic units called "barrels." Each barrel is known to be related, in a one to one manner, to a contralateral whisker or vibrissa on the animal's face. In this study we have examined Golgi-impregnated neurons that comprise the "barrels." Several criteria, some being quantitative measures of dendritic arbors and somal sizes which were obtained with a computer-microscope system, suggest that all barrel neurons can be placed in two classes, the members of which are present in approximately equal numbers. The cells in the two classes can be further subdivided on the basis of the relationship of their processes to the barrels: 85% of them have processes restricted to a single barrel; 15% of them distribute their processes to two or more barrels. From these observations it is possible to suggest that a majority of neurons comprising the barrels would respond initially to movements of only one whisker while the remainder would respond to movements of two or more whiskers. In addition it has been shown that the quantitation of neuronal structure can provide a numerical basis for the classification of neurons in the central nervous system.

Full text

PDF
2165

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cowan W. M., Wann D. F. A computer system for the measurement of cell and nuclear sizes. J Microsc. 1973 Dec;99(3):331–348. doi: 10.1111/j.1365-2818.1973.tb04630.x. [DOI] [PubMed] [Google Scholar]
  2. Globus A., Scheibel A. B. Pattern and field in cortical structure: the rabbit. J Comp Neurol. 1967 Oct;131(2):155–172. doi: 10.1002/cne.901310207. [DOI] [PubMed] [Google Scholar]
  3. Jones E. G. Varieties and distribution of non-pyramidal cells in the somatic sensory cortex of the squirrel monkey. J Comp Neurol. 1975 Mar 15;160(2):205–267. doi: 10.1002/cne.901600204. [DOI] [PubMed] [Google Scholar]
  4. Kelly J. P., Van Essen D. C. Cell structure and function in the visual cortex of the cat. J Physiol. 1974 May;238(3):515–547. doi: 10.1113/jphysiol.1974.sp010541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Killackey H. P. Anatomical evidence for cortical subdivisions based on vertically discrete thalamic projections from the ventral posterior nucleus to cortical barrels in the rat. Brain Res. 1973 Mar 15;51:326–331. doi: 10.1016/0006-8993(73)90383-1. [DOI] [PubMed] [Google Scholar]
  6. LeVay S. Synaptic patterns in the visual cortex of the cat and monkey. Electron microscopy of Golgi preparations. J Comp Neurol. 1973 Jul 1;150(1):53–85. doi: 10.1002/cne.901500104. [DOI] [PubMed] [Google Scholar]
  7. Lund J. S. Organization of neurons in the visual cortex, area 17, of the monkey (Macaca mulatta). J Comp Neurol. 1973 Feb 15;147(4):455–496. doi: 10.1002/cne.901470404. [DOI] [PubMed] [Google Scholar]
  8. Pasternak J. F., Woolsey T. A. On the "selectivity" of the Golgi-Cox method. J Comp Neurol. 1975 Apr 1;160(3):307–312. doi: 10.1002/cne.901600304. [DOI] [PubMed] [Google Scholar]
  9. Pasternak J. R., Woolsey T. A. The number, size and spatial distribution of neurons in lamina IV of the mouse SmI neocortex. J Comp Neurol. 1975 Apr 1;160(3):291–306. doi: 10.1002/cne.901600303. [DOI] [PubMed] [Google Scholar]
  10. Price J. L., Powell T. P. The mitral and short axon cells of the olfactory bulb. J Cell Sci. 1970 Nov;7(3):631–651. doi: 10.1242/jcs.7.3.631. [DOI] [PubMed] [Google Scholar]
  11. VAN DER LOOS H. Une combinaison de deux vieilles méthodes histologiques pour le système nerveux central. Monatsschr Psychiatr Neurol. 1956 Nov-Dec;132(5-6):330–334. [PubMed] [Google Scholar]
  12. Van der Loos H., Woolsey T. A. Somatosensory cortex: structural alterations following early injury to sense organs. Science. 1973 Jan 26;179(4071):395–398. doi: 10.1126/science.179.4071.395. [DOI] [PubMed] [Google Scholar]
  13. Wann D. F., Woolsey T. A., Dierker M. L., Cowan W. M. An on-line digital-computer system for the semiautomatic analysis of Golgi-impregnated neurons. IEEE Trans Biomed Eng. 1973 Jul;20(4):233–247. doi: 10.1109/TBME.1973.324187. [DOI] [PubMed] [Google Scholar]
  14. Woolsey T. A. Somatosensory, auditory and visual cortical areas of the mouse. Johns Hopkins Med J. 1967 Aug;121(2):91–112. [PubMed] [Google Scholar]
  15. Woolsey T. A., Van der Loos H. The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res. 1970 Jan 20;17(2):205–242. doi: 10.1016/0006-8993(70)90079-x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES