Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1975 Jun;72(6):2237–2241. doi: 10.1073/pnas.72.6.2237

Genetic analysis of the cell surface: association of human chromosome 5 with sensitivity to diphtheria toxin in mouse-human somatic cell hybrids.

R P Creagan, S Chen, F H Ruddle
PMCID: PMC432732  PMID: 1056028

Abstract

Diphtheria toxin inhibits protein synthesis in eukaryotic cells by catalyzing inactivation of elongation factor 2. The 10,000-fold greater sensitivity in vitro to diphtheria toxin of human cells as compared to mouse cells seems to be attributable to a difference at the level of the cell membrane. Mouse-human cell hybrids are as sensitive to diphtheria toxin as human cells. We have shown that the sensitivity of the hybrid cells is due to a gene or genes located on human chromosome 5. Mouse-human hybrid cells in which chromosome 5 is present are as sensitive to the toxin as human cells, which hybrids without chromosome 5 are as resistant as mouse cells. Entry of toxin into cells seems to be a two-step process involvin, (1) binding of toxin to the cell surface and (2) endocytotic uptake of toxin. The difference in sensitivity between human and mouse cells and between hybrid cells with and without chromosome 5 does not appear to be due to a difference in endocytotic activity and may be due to presence or absence of toxin-specific receptor.

Full text

PDF
2237

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Buzzi S., Maistrello I. Inhibition of growth of Erlich tumors in Swiss mice by diphtheria toxin. Cancer Res. 1973 Oct;33(10):2349–2353. [PubMed] [Google Scholar]
  2. Caspersson T., Zech L., Johansson C. Analysis of human metaphase chromosome set by aid of DNA-binding fluorescent agents. Exp Cell Res. 1970 Oct;62(2):490–492. doi: 10.1016/0014-4827(70)90586-0. [DOI] [PubMed] [Google Scholar]
  3. Dendy P. R., Harris H. Sensitivity to diphtheria toxin as a species-specific marker in hybrid cells. J Cell Sci. 1973 May;12(3):831–837. doi: 10.1242/jcs.12.3.831. [DOI] [PubMed] [Google Scholar]
  4. Gilbert F., Kucherlapati R., Creagan R. P., Murnane M. J., Darlington G. J., Ruddle F. H. Tay-Sachs' and Sandhoff's diseases: the assignment of genes for hexosaminidase A and B to individual human chromosomes. Proc Natl Acad Sci U S A. 1975 Jan;72(1):263–267. doi: 10.1073/pnas.72.1.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gilbert F., Kucherlapati R., Creagan R., Murnane M. J., Darlington G. J., Ruddle F. H. Proceedings: Hexosaminidase B: assignment of a locus involved in its expression to chromosome 5 in man. Cytogenet Cell Genet. 1974;13(1):93–95. doi: 10.1159/000130244. [DOI] [PubMed] [Google Scholar]
  6. Iglewski B. H., Rittenberg M. B. Selective toxicity of diphtheria toxin for malignant cells. Proc Natl Acad Sci U S A. 1974 Jul;71(7):2707–2710. doi: 10.1073/pnas.71.7.2707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ittelson T. R., Gill D. M. Diphtheria toxin: specific competition for cell receptors. Nature. 1973 Mar 30;242(5396):330–332. doi: 10.1038/242330b0. [DOI] [PubMed] [Google Scholar]
  8. Jami J., Grandchamp S., Ephrussi B. Sur le comportement caryologique des hybrides callulaires homme x souris. C R Acad Sci Hebd Seances Acad Sci D. 1971 Jan 11;272(2):323–326. [PubMed] [Google Scholar]
  9. Kusano T., Long C., Green H. A new reduced human-mouse somatic cell hybrid containing the human gene for adenine phosphoribosyltransferase. Proc Natl Acad Sci U S A. 1971 Jan;68(1):82–86. doi: 10.1073/pnas.68.1.82. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lin J. Y., Tserng K. Y., Chen C. C., Lin L. T., Tung T. C. Abrin and ricin: new anti-tumour substances. Nature. 1970 Jul 18;227(5255):292–293. doi: 10.1038/227292a0. [DOI] [PubMed] [Google Scholar]
  11. Minna J. D., Coon H. G. Human times mouse hybrid cells segregating mouse chromosomes and isozymes. Nature. 1974 Nov 29;252(5482):401–404. doi: 10.1038/252401a0. [DOI] [PubMed] [Google Scholar]
  12. Nichols E. A., Ruddle F. H. A review of enzyme polymorphism, linkage and electrophoretic conditions for mouse and somatic cell hybrids in starch gels. J Histochem Cytochem. 1973 Dec;21(12):1066–1081. doi: 10.1177/21.12.1066. [DOI] [PubMed] [Google Scholar]
  13. Oliver J. M., Ukena T. E., Berlin R. D. Effects of phagocytosis and colchicine on the distribution of lectin-binding sites on cell surfaces. Proc Natl Acad Sci U S A. 1974 Feb;71(2):394–398. doi: 10.1073/pnas.71.2.394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pappenheimer A. M., Jr, Gill D. M. Diphtheria. Science. 1973 Oct 26;182(4110):353–358. doi: 10.1126/science.182.4110.353. [DOI] [PubMed] [Google Scholar]
  15. Reddy V. V., Sirsi M. Effect of Abrus precatorius L. on experimental tumors. Cancer Res. 1969 Jul;29(7):1447–1451. [PubMed] [Google Scholar]
  16. Refsnes K., Olsnes S., Pihl A. On the toxic proteins abrin and ricin. Studies of their binding to and entry into Ehrlich ascites cells. J Biol Chem. 1974 Jun 10;249(11):3557–3562. [PubMed] [Google Scholar]
  17. Tischfield J. A., Ruddle F. H. Assignment of the gene for adenine phosphoribosyltransferase to human chromosome 16 by mouse-human somatic cell hybridization. Proc Natl Acad Sci U S A. 1974 Jan;71(1):45–49. doi: 10.1073/pnas.71.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Uchida T., Pappenheimer A. M., Jr, Harper A. A. Diphtheria toxin and related proteins. II. Kinetic studies on intoxication of HeLa cells by diphtheria toxin and related proteins. J Biol Chem. 1973 Jun 10;248(11):3845–3850. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES