Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1975 Jun;72(6):2389–2393. doi: 10.1073/pnas.72.6.2389

Potential for Nitrogen Fixation in Maize Genotypes in Brazil

Joachim F W Von Bülow 1, Johanna Döbereiner 1
PMCID: PMC432764  PMID: 16592251

Abstract

N2 fixation in field-grown maize (Zea mays L.) plants was estimated by a nondestructive acetylene reduction method which permitted the plants to continue growing and produce seeds. Samples from six areas revealed mean nitrogenase activities of 74-2167 nmol of C2H4/(g of dry roots × hr) for 10 plants. Among 276 S1 lines planted in two field experiments, 17 lines were selected for further nitrogenase activity assays after prescreening. Variability within lines was high but significant differences among lines were obtained in one experiment. The best lines showed mean nitrogenase activities of 2026, 2315, and 7124 nmol of C2H4/(g of dry roots × hr), whereas the original cultivar reduced only 313 nmol. The highest value approaches the nitrogenase activity of soybean. If the theoretical 3:1 (C2H4/N2 reduced) conversion factor is used, a potential daily N2 fixation of 2 kg of N2/hectare can be calculated. Periodic sampling within a brachytic maize cultivar revealed that maximum nitrogenase activity occurred at about the 75% silking stage. Soil effects also were pronounced. N2-fixing Spirillum sp. could be isolated from all active root pieces when they were surface sterilized. These organisms appear to be primarily responsible for root nitrogenase activity in maize.

Keywords: grass-bacteria associations, Spirillum lipoferum, acetylene reduction

Full text

PDF
2389

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Raju P. N., Evans H. J., Seidler R. J. An asymbiotic nitrogen-fixing bacterium from the root environment of corn. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3474–3478. doi: 10.1073/pnas.69.11.3474. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES