Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1975 Jul;72(7):2483–2487. doi: 10.1073/pnas.72.7.2483

Antigen mobility in membranes and complement-medical immune attack.

G M Humphires, H M McConnell
PMCID: PMC432791  PMID: 1058468

Abstract

The complement fixing activity of liposomes containing cholesterol, dimyristoylphosphatidylcholine (or dipalmitoylphosphatidylcholine), and 3 mol % of cardiolipin has been studied as a function of cholesterol concentration by use of human syphilitic serum containing cardiolipin-specific (Wasserman) antibodies. It is found that complement fixation increases rapidly for cholesterol concentrations above 35 mol %. Spin label studies have been used to study the incorporation of cardiolipin in the relatively rigid phase of binary mixtures of cholesterol and dimyristolphosphatidycholine (or dipalmitoylphosphatidylcholine). It is concluded that cardiolipin is included in such a phase of these lipids for cholesterol concentrations above 35 mol %. These results indicate that a relatively rigid lateral distribution of this monovalent antigen in the plane of the membrane facilitates complement fixation and concomitant complement-mediated membrane damage.

Full text

PDF
2483

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cogan U., Shinitzky M., Weber G., Nishida T. Microviscosity and order in the hydrocarbon region of phospholipid and phospholipid-cholesterol dispersions determined with fluorescent probes. Biochemistry. 1973 Jan 30;12(3):521–528. doi: 10.1021/bi00727a026. [DOI] [PubMed] [Google Scholar]
  2. Cunniff R. V., Stollar B. D. Properties of 19 S antibodies in complement fixation. I. Temperature dependence and role of antigen structure. J Immunol. 1968 Jan;100(1):7–14. [PubMed] [Google Scholar]
  3. Edelman G. M., Yahara I., Wang J. L. Receptor mobility and receptor-cytoplasmic interactions in lymphocytes. Proc Natl Acad Sci U S A. 1973 May;70(5):1442–1446. doi: 10.1073/pnas.70.5.1442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Elgsaeter A., Branton D. Intramembrane particle aggregation in erythrocyte ghosts. I. The effects of protein removal. J Cell Biol. 1974 Dec;63(3):1018–1036. doi: 10.1083/jcb.63.3.1018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Engelman D. M., Rothman J. E. The planar organization of lecithin-cholesterol bilayers. J Biol Chem. 1972 Jun 10;247(11):3694–3697. [PubMed] [Google Scholar]
  6. Grant C. W., McConnell H. M. Glycophorin in lipid bilayers. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4653–4657. doi: 10.1073/pnas.71.12.4653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Grant C. W., Wu S. H., McConnell H. M. Lateral phase separations in binary lipid mixtures: correlation between spin label and freeze-fracture electron microscopic studies. Biochim Biophys Acta. 1974 Sep 6;363(2):151–158. doi: 10.1016/0005-2736(74)90055-8. [DOI] [PubMed] [Google Scholar]
  8. Hinz H. J., Sturtevant J. M. Calorimetric investigation of the influence of cholesterol on the transition properties of bilayers formed from synthetic L- -lecithins in aqueous suspension. J Biol Chem. 1972 Jun 10;247(11):3697–3700. [PubMed] [Google Scholar]
  9. Hubbell W. L., McConnell H. M. Molecular motion in spin-labeled phospholipids and membranes. J Am Chem Soc. 1971 Jan 27;93(2):314–326. doi: 10.1021/ja00731a005. [DOI] [PubMed] [Google Scholar]
  10. Humphries G. K., McConnell H. M. Immune lysis of liposomes and erythrocyte ghosts loaded with spin label. Proc Natl Acad Sci U S A. 1974 May;71(5):1691–1694. doi: 10.1073/pnas.71.5.1691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Marsh D., Smith I. C. An interacting spin label study of the fluidizing and condensing effects of cholesterol on lecithin bilayers. Biochim Biophys Acta. 1973 Mar 16;298(2):133–144. doi: 10.1016/0005-2736(73)90345-3. [DOI] [PubMed] [Google Scholar]
  12. Nicolson G. L., Painter R. G. Anionic sites of human erythrocyte membranes. II. Antispectrin-induced transmembrane aggregation of the binding sites for positively charged colloidal particles. J Cell Biol. 1973 Nov;59(2 Pt 1):395–406. doi: 10.1083/jcb.59.2.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Oldfield E., Chapman D., Derbyshire W. Deuteron resonance: A novel approach to the study of hydrocarbon chain mobility in membrane systems. FEBS Lett. 1971 Aug 1;16(2):102–104. doi: 10.1016/0014-5793(71)80343-5. [DOI] [PubMed] [Google Scholar]
  14. Shimshick E. J., McConnell H. M. Lateral phase separation in phospholipid membranes. Biochemistry. 1973 Jun 5;12(12):2351–2360. doi: 10.1021/bi00736a026. [DOI] [PubMed] [Google Scholar]
  15. Shimshick E. J., McConnell H. M. Lateral phase separations in binary mixtures of cholesterol and phospholipids. Biochem Biophys Res Commun. 1973 Jul 17;53(2):446–451. doi: 10.1016/0006-291x(73)90682-7. [DOI] [PubMed] [Google Scholar]
  16. Six H. R., Uemura K. I., Kinsky S. C. Effect of immunoglobulin class and affinity on the initiation of complement-dependent damage to liposomal model membranes sensitized with dinitrophenylated phospholipids. Biochemistry. 1973 Sep 25;12(20):4003–4011. doi: 10.1021/bi00744a034. [DOI] [PubMed] [Google Scholar]
  17. Uemura K., Kinsky S. C. Active vs. passive sensitization of liposomes toward antibody and complement by dinitrophenylated derivatives of phosphatidylethanolamine. Biochemistry. 1972 Oct 24;11(22):4085–4094. doi: 10.1021/bi00772a010. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES