Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Mar 1;91(5):1942–1945. doi: 10.1073/pnas.91.5.1942

Intestinal absorption and excretion of octapeptides composed of D amino acids.

J R Pappenheimer 1, C E Dahl 1, M L Karnovsky 1, J E Maggio 1
PMCID: PMC43280  PMID: 8127911

Abstract

Octapeptides synthesized from D amino acids were absorbed from the intestine and excreted in urine of normal rats drinking 5% glucose/1% creatinine containing the 125I-labeled peptides at 0.1-25 mg/dl. The rats ingested fluid at the rate of about 20 ml/hr and produced urine at 15 ml/hr for several hours during the nocturnal feeding period. Sixty-one +/- 4% of the ingested creatinine and 50 +/- 3% of a lipid-insoluble D octapeptide (EASASYSA, 784 Da) were excreted intact in the urine. The steady-state molar rate of absorption-excretion of creatinine equaled or exceeded the maximum rate of carrier-mediated intestinal transport of glucose, suggesting that both the creatinine and the D octapeptide were transported paracellularly by solvent drag through absorptive cell junctions that were dilated by the glucose. More than 70% of the ingested glucose was also absorbed paracellularly. The results demonstrate that intact oligopeptides can be absorbed efficiently from the intestine when they are not hydrolyzed by membrane-bound peptidases of the brush border. The results also provide support for recent theories proposing that coupling of membrane digestion with paracellular solvent drag accounts for a major fraction of normal intestinal absorption of nutrients.

Full text

PDF
1942

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amoss M., Rivier J., Guillemin R. Release of gonadotropins by oral administration of synthetic LRF or a tripeptide fragment of LRF. J Clin Endocrinol Metab. 1972 Jul;35(1):175–177. doi: 10.1210/jcem-35-1-175. [DOI] [PubMed] [Google Scholar]
  2. Atisook K., Madara J. L. An oligopeptide permeates intestinal tight junctions at glucose-elicited dilatations. Implications for oligopeptide absorption. Gastroenterology. 1991 Mar;100(3):719–724. doi: 10.1016/0016-5085(91)80016-3. [DOI] [PubMed] [Google Scholar]
  3. Bauer W., Briner U., Doepfner W., Haller R., Huguenin R., Marbach P., Petcher T. J., Pless SMS 201-995: a very potent and selective octapeptide analogue of somatostatin with prolonged action. Life Sci. 1982 Sep 13;31(11):1133–1140. doi: 10.1016/0024-3205(82)90087-x. [DOI] [PubMed] [Google Scholar]
  4. Chang C. D., Meienhofer J. Solid-phase peptide synthesis using mild base cleavage of N alpha-fluorenylmethyloxycarbonylamino acids, exemplified by a synthesis of dihydrosomatostatin. Int J Pept Protein Res. 1978 Mar;11(3):246–249. doi: 10.1111/j.1399-3011.1978.tb02845.x. [DOI] [PubMed] [Google Scholar]
  5. Fuessl H. S., Domin J., Bloom S. R. Oral absorption of the somatostatin analogue SMS 201-995: theoretical and practical implications. Clin Sci (Lond) 1987 Feb;72(2):255–257. doi: 10.1042/cs0720255. [DOI] [PubMed] [Google Scholar]
  6. Gardner M. L. Intestinal assimilation of intact peptides and proteins from the diet--a neglected field? Biol Rev Camb Philos Soc. 1984 Aug;59(3):289–331. doi: 10.1111/j.1469-185x.1984.tb00708.x. [DOI] [PubMed] [Google Scholar]
  7. Lundin S., Vilhardt H. Absorption of intragastrically administered DDAVP in conscious dogs. Life Sci. 1986 Feb 24;38(8):703–709. doi: 10.1016/0024-3205(86)90584-9. [DOI] [PubMed] [Google Scholar]
  8. Madara J. L., Pappenheimer J. R. Structural basis for physiological regulation of paracellular pathways in intestinal epithelia. J Membr Biol. 1987;100(2):149–164. doi: 10.1007/BF02209147. [DOI] [PubMed] [Google Scholar]
  9. Matthews D. M. Intestinal absorption of peptides. Physiol Rev. 1975 Oct;55(4):537–608. doi: 10.1152/physrev.1975.55.4.537. [DOI] [PubMed] [Google Scholar]
  10. Molnar J. A., Cunningham J. J., Miyatani S., Vizulis A., Wright J. D., Burke J. F. Closed-circuit metabolic system with multiple applications. J Appl Physiol (1985) 1986 Oct;61(4):1582–1585. doi: 10.1152/jappl.1986.61.4.1582. [DOI] [PubMed] [Google Scholar]
  11. Pappenheimer J. R. On the coupling of membrane digestion with intestinal absorption of sugars and amino acids. Am J Physiol. 1993 Sep;265(3 Pt 1):G409–G417. doi: 10.1152/ajpgi.1993.265.3.G409. [DOI] [PubMed] [Google Scholar]
  12. Pappenheimer J. R., Reiss K. Z. Contribution of solvent drag through intercellular junctions to absorption of nutrients by the small intestine of the rat. J Membr Biol. 1987;100(2):123–136. doi: 10.1007/BF02209145. [DOI] [PubMed] [Google Scholar]
  13. Pappenheimer J. R., Volpp K. Transmucosal impedance of small intestine: correlation with transport of sugars and amino acids. Am J Physiol. 1992 Aug;263(2 Pt 1):C480–C493. doi: 10.1152/ajpcell.1992.263.2.C480. [DOI] [PubMed] [Google Scholar]
  14. Semenza G. Anchoring and biosynthesis of stalked brush border membrane proteins: glycosidases and peptidases of enterocytes and renal tubuli. Annu Rev Cell Biol. 1986;2:255–313. doi: 10.1146/annurev.cb.02.110186.001351. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES