Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1975 Jul;72(7):2761–2764. doi: 10.1073/pnas.72.7.2761

Distribution of allelic frequencies in a finite population under stepwise production of neutral alleles.

M Kimura, T Ota
PMCID: PMC432851  PMID: 1058491

Abstract

A formula for the distribution of allelic frequencies in a finite population is derived assuming stepwise production of multiple alleles. Monte Carlo experiments were performed to check the validity of the formula, and excellent agreement was obtained between theoretical distribution and experimental results. The formula should be useful for analyzing genetic variability in natural populations that can be detected by electrophoretic methods.

Full text

PDF
2761

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ewens W. J. The sampling theory of selectively neutral alleles. Theor Popul Biol. 1972 Mar;3(1):87–112. doi: 10.1016/0040-5809(72)90035-4. [DOI] [PubMed] [Google Scholar]
  2. KIMURA M., CROW J. F. THE NUMBER OF ALLELES THAT CAN BE MAINTAINED IN A FINITE POPULATION. Genetics. 1964 Apr;49:725–738. doi: 10.1093/genetics/49.4.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Kimura M. Genetic variability maintained in a finite population due to mutational production of neutral and nearly neutral isoalleles. Genet Res. 1968 Jun;11(3):247–269. doi: 10.1017/s0016672300011459. [DOI] [PubMed] [Google Scholar]
  4. Kimura M., Ohta T. Mutation and evolution at the molecular level. Genetics. 1973 Apr;73(Suppl):19–35. [PubMed] [Google Scholar]
  5. King J. L. Isoallele frequencies in very large populations. Genetics. 1974 Mar;76(3):607–613. doi: 10.1093/genetics/76.3.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. King J. L. The probability of electrophoretic idendity of proteins as a function of amino acid divergence. J Mol Evol. 1973 Nov 27;2(4):317–322. doi: 10.1007/BF01654099. [DOI] [PubMed] [Google Scholar]
  7. Nei M., Chakraborty R. Genetic distance and electrophoretic identity of proteins between taxa. J Mol Evol. 1973 Nov 27;2(4):323–328. doi: 10.1007/BF01654100. [DOI] [PubMed] [Google Scholar]
  8. Ohta T., Kimura M. A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Genet Res. 1973 Oct;22(2):201–204. doi: 10.1017/s0016672300012994. [DOI] [PubMed] [Google Scholar]
  9. Ohta T., Kimura M. Simulation studies on electrophoretically detectable genetic variability in a finite population. Genetics. 1974 Mar;76(3):615–624. doi: 10.1093/genetics/76.3.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ota T. Mutational pressure as the main cause of molecular evolution and polymorphism. Nature. 1974 Nov 29;252(5482):351–354. doi: 10.1038/252351a0. [DOI] [PubMed] [Google Scholar]
  11. Wright S. The Distribution of Gene Frequencies Under Irreversible Mutation. Proc Natl Acad Sci U S A. 1938 Jul;24(7):253–259. doi: 10.1073/pnas.24.7.253. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES