Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1975 Aug;72(8):2950–2954. doi: 10.1073/pnas.72.8.2950

Interaction of elongation factor Tu with 2'(3')-O-aminoacyloligonucleotides derived from the 3' terminus of aminoacyl-tRNA.

D Ringer, S Chládek
PMCID: PMC432896  PMID: 1059085

Abstract

The interaction between Escherichia coli elongation factor-Tu-GTP complex and chemically synthesized 2'(3')-O-aminoacyldinucleoside phosphates with the nucleotide sequence of the 3' terminus of aminoacyl-tRNA (AA-tRNA) has been studied. It was found that C-A-Phe, C-A-Pro, and C-A-Asp interact with EF-Tu-GTP, causing the release of GTP bound to the enzyme. The specificity of this interaction closely resembles that of AA-tRNA since C-A and C-A(Ac-Phe) as well as the corresponding tRNAs are inactive. The 3'-O-aminoacyl derivative C-2'-dA-Phe does not interact with EF-Tu-GTP, whereas the 2'-O-aminoacyl derivative C-3'-dA-Phe is almost as active as the 2'(3')-O-aminoacyl derivative, C-A-Phe. C-A-Phe also interacts with the EF-Tu-GDP complex in a manner similar to its interaction with EF-Tu-GTP. It is concluded that interaction of 2'(3')-O-aminoacyloligonucleotides possessing the sequence of the 3' terminus of AA-tRNA is analogous to the interaction of that terminus with EF-Tu and it is suggested that EF-Tu is specific for 2'-O-AA-tRNA.

Full text

PDF
2950

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arai K. I., Kawakita M., Kaziro Y., Maeda T., Onishi S. I. Conformational transition in polypeptide elongation factor Tu as revealed by electron spin resonance. J Biol Chem. 1974 May 25;249(10):3311–3313. [PubMed] [Google Scholar]
  2. Beres L., Lucas-Lenard J. Studies on the fluorescence of the Y base of yeast phenylalanine transfer ribonucleic acid. Effect of pH, aminoacylation, and interaction with elongation factor Tu. Biochemistry. 1973 Sep 25;12(20):3998–4002. doi: 10.1021/bi00744a033. [DOI] [PubMed] [Google Scholar]
  3. Chinali G., Sprinzl M., Parmeggiani A., Cramer F. Participation in protein biosynthesis of transfer ribonucleic acids bearing altered 3'-terminal ribosyl residues. Biochemistry. 1974 Jul 16;13(15):3001–3010. doi: 10.1021/bi00712a001. [DOI] [PubMed] [Google Scholar]
  4. Chládek S., Ringer D., Quiggle K. "Nonisomerizable" 2'-and 3'-O-aminoacyl dinucleoside phosphates. Chemical synthesis and acceptor activity in the ribosomal peptidyltransferase reaction. Biochemistry. 1974 Jun 18;13(13):2727–2735. doi: 10.1021/bi00710a011. [DOI] [PubMed] [Google Scholar]
  5. Gordon J. A stepwise reaction yielding a complex between a supernatant fraction from E. coli, guanosine 5'-triphosphate, and aminoacyl-sRNA. Proc Natl Acad Sci U S A. 1968 Jan;59(1):179–183. doi: 10.1073/pnas.59.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gordon J. Interaction of guanosine 5'-triphosphate with a supernatant fraction from E. coli and aminoacyl-sRNA. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1574–1578. doi: 10.1073/pnas.58.4.1574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hecht S. M., Kozarich J. W., Schmidt F. J. Isomeric phenylalanyl-tRNAs. Position of the aminoacyl moiety during protein biosynthesis. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4317–4321. doi: 10.1073/pnas.71.11.4317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hussain Z., Ofengand J. Terminal oxidation-reduction of yeast phenylalanine tRNA prevents donor and acceptor function at the peptidyl transferase center. Biochem Biophys Res Commun. 1973 Feb 20;50(4):1143–1151. doi: 10.1016/0006-291x(73)91525-8. [DOI] [PubMed] [Google Scholar]
  9. Kawakami M., Tanada S., Takemura S. Properties of alanyl-oligonucleotide, puromycin, and Staphylococcus epidermidis glycyl-tRNA in interaction with elongation factor Tu:GTP complex. FEBS Lett. 1975 Mar 1;51(1):321–324. doi: 10.1016/0014-5793(75)80917-3. [DOI] [PubMed] [Google Scholar]
  10. Krauskopf M., Chen C. M., Ofengand J. Interaction of fragmented and cross-linked Escherichia coli valine transfer ribonucleic acid with T u factor-guanosine triphosphate complex. J Biol Chem. 1972 Feb 10;247(3):842–850. [PubMed] [Google Scholar]
  11. Lengyel P., Söll D. Mechanism of protein biosynthesis. Bacteriol Rev. 1969 Jun;33(2):264–301. doi: 10.1128/br.33.2.264-301.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Maelicke A., Sprinzl M., von der Haar F., Khwaja T. A., Cramer F. Structural studies on phenylalanine transfer ribonucleic acid from yeast with the spectroscopic label formycin. Eur J Biochem. 1974 Apr 16;43(3):617–625. doi: 10.1111/j.1432-1033.1974.tb03449.x. [DOI] [PubMed] [Google Scholar]
  13. Miller D. L., Hachmann J., Weissbach H. The reactions of the sulfhydryl groups on the elongation factors Tu and Ts. Arch Biochem Biophys. 1971 May;144(1):115–121. doi: 10.1016/0003-9861(71)90460-7. [DOI] [PubMed] [Google Scholar]
  14. Miller D. L., Weissbach H. Studies on the purification and properties of factor Tu from E. coli. Arch Biochem Biophys. 1970 Nov;141(1):26–37. doi: 10.1016/0003-9861(70)90102-5. [DOI] [PubMed] [Google Scholar]
  15. Ofengand J., Chen C. M. Inactivation of T u factor-guanosine triphosphate recognition and ribosome-binding ability by terminal oxidation-reduction of yeast phenylalanine transfer ribonucleic acid. J Biol Chem. 1972 Apr 10;247(7):2049–2058. [PubMed] [Google Scholar]
  16. Printz M. P., Miller D. L. Evidence for conformational changes in elongation factor Tu induced by GTP and GDP. Biochem Biophys Res Commun. 1973 Jul 2;53(1):149–156. doi: 10.1016/0006-291x(73)91413-7. [DOI] [PubMed] [Google Scholar]
  17. Ravel J. M., Shorey R. L., Froehner S., Shive W. A study of the enzymic transfer of aminoacyl-RNA to Escherichia coli ribosomes. Arch Biochem Biophys. 1968 May;125(2):514–526. doi: 10.1016/0003-9861(68)90609-7. [DOI] [PubMed] [Google Scholar]
  18. Ravel J. M., Shorey R. L., Shive W. Evidence for a guanine nucleotide-aminoacyl-RNA complex as an intermediate in the enzymatic transfer of aminoacyl-RNA to ribosomes. Biochem Biophys Res Commun. 1967 Oct 11;29(1):68–73. doi: 10.1016/0006-291x(67)90542-6. [DOI] [PubMed] [Google Scholar]
  19. Ringer D., Quiggle K., Chládek S. Recognition of the 3' terminus of 2'-O-aminoacyl transfer ribonucleic acid by the acceptor site of ribosomal peptidyltransferase. Biochemistry. 1975 Feb 11;14(3):514–520. doi: 10.1021/bi00674a009. [DOI] [PubMed] [Google Scholar]
  20. Schulman L. H., Pelka H., Sundari R. M. Structural requirements for recognition of Escherichia coli initiator and non-initiator transfer ribonucleic acids by bacterial T factor. J Biol Chem. 1974 Nov 25;249(22):7102–7110. [PubMed] [Google Scholar]
  21. Skoultchi A., Ono Y., Moon H. M., Lengyel P. On three complementary amino acid polymerization factors from Bacillus stearothermophilus: separation of a complex containing two of the factors, guanosine-5'-triphosphate and aminoacyl-transfer RNA. Proc Natl Acad Sci U S A. 1968 Jun;60(2):675–682. doi: 10.1073/pnas.60.2.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sundaralingam M., Arora S. K. Stereochemistry of nucleic acids and their constituents. IX. The conformation of the antibiotic puromycin dihydrochloride pentahydrate. Proc Natl Acad Sci U S A. 1969 Nov;64(3):1021–1026. doi: 10.1073/pnas.64.3.1021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. WOLFENDEN R., RAMMLER D. H., LIPMANN F. ON THE SITE OF ESTERIFICATION OF AMINO ACIDS TO SOLUBLE RNA. Biochemistry. 1964 Mar;3:329–338. doi: 10.1021/bi00891a006. [DOI] [PubMed] [Google Scholar]
  24. Yathindra N., Sundaralingam M. Potential energy calculations on conformations of puromycin and 3'-terminal aminoacyl adenosines of transfer RNAs. Biochim Biophys Acta. 1973 Apr 21;308(7):17–27. doi: 10.1016/0005-2787(73)90117-2. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES