Abstract
The interaction between Escherichia coli elongation factor-Tu-GTP complex and chemically synthesized 2'(3')-O-aminoacyldinucleoside phosphates with the nucleotide sequence of the 3' terminus of aminoacyl-tRNA (AA-tRNA) has been studied. It was found that C-A-Phe, C-A-Pro, and C-A-Asp interact with EF-Tu-GTP, causing the release of GTP bound to the enzyme. The specificity of this interaction closely resembles that of AA-tRNA since C-A and C-A(Ac-Phe) as well as the corresponding tRNAs are inactive. The 3'-O-aminoacyl derivative C-2'-dA-Phe does not interact with EF-Tu-GTP, whereas the 2'-O-aminoacyl derivative C-3'-dA-Phe is almost as active as the 2'(3')-O-aminoacyl derivative, C-A-Phe. C-A-Phe also interacts with the EF-Tu-GDP complex in a manner similar to its interaction with EF-Tu-GTP. It is concluded that interaction of 2'(3')-O-aminoacyloligonucleotides possessing the sequence of the 3' terminus of AA-tRNA is analogous to the interaction of that terminus with EF-Tu and it is suggested that EF-Tu is specific for 2'-O-AA-tRNA.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arai K. I., Kawakita M., Kaziro Y., Maeda T., Onishi S. I. Conformational transition in polypeptide elongation factor Tu as revealed by electron spin resonance. J Biol Chem. 1974 May 25;249(10):3311–3313. [PubMed] [Google Scholar]
- Beres L., Lucas-Lenard J. Studies on the fluorescence of the Y base of yeast phenylalanine transfer ribonucleic acid. Effect of pH, aminoacylation, and interaction with elongation factor Tu. Biochemistry. 1973 Sep 25;12(20):3998–4002. doi: 10.1021/bi00744a033. [DOI] [PubMed] [Google Scholar]
- Chinali G., Sprinzl M., Parmeggiani A., Cramer F. Participation in protein biosynthesis of transfer ribonucleic acids bearing altered 3'-terminal ribosyl residues. Biochemistry. 1974 Jul 16;13(15):3001–3010. doi: 10.1021/bi00712a001. [DOI] [PubMed] [Google Scholar]
- Chládek S., Ringer D., Quiggle K. "Nonisomerizable" 2'-and 3'-O-aminoacyl dinucleoside phosphates. Chemical synthesis and acceptor activity in the ribosomal peptidyltransferase reaction. Biochemistry. 1974 Jun 18;13(13):2727–2735. doi: 10.1021/bi00710a011. [DOI] [PubMed] [Google Scholar]
- Gordon J. A stepwise reaction yielding a complex between a supernatant fraction from E. coli, guanosine 5'-triphosphate, and aminoacyl-sRNA. Proc Natl Acad Sci U S A. 1968 Jan;59(1):179–183. doi: 10.1073/pnas.59.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gordon J. Interaction of guanosine 5'-triphosphate with a supernatant fraction from E. coli and aminoacyl-sRNA. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1574–1578. doi: 10.1073/pnas.58.4.1574. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hecht S. M., Kozarich J. W., Schmidt F. J. Isomeric phenylalanyl-tRNAs. Position of the aminoacyl moiety during protein biosynthesis. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4317–4321. doi: 10.1073/pnas.71.11.4317. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hussain Z., Ofengand J. Terminal oxidation-reduction of yeast phenylalanine tRNA prevents donor and acceptor function at the peptidyl transferase center. Biochem Biophys Res Commun. 1973 Feb 20;50(4):1143–1151. doi: 10.1016/0006-291x(73)91525-8. [DOI] [PubMed] [Google Scholar]
- Kawakami M., Tanada S., Takemura S. Properties of alanyl-oligonucleotide, puromycin, and Staphylococcus epidermidis glycyl-tRNA in interaction with elongation factor Tu:GTP complex. FEBS Lett. 1975 Mar 1;51(1):321–324. doi: 10.1016/0014-5793(75)80917-3. [DOI] [PubMed] [Google Scholar]
- Krauskopf M., Chen C. M., Ofengand J. Interaction of fragmented and cross-linked Escherichia coli valine transfer ribonucleic acid with T u factor-guanosine triphosphate complex. J Biol Chem. 1972 Feb 10;247(3):842–850. [PubMed] [Google Scholar]
- Lengyel P., Söll D. Mechanism of protein biosynthesis. Bacteriol Rev. 1969 Jun;33(2):264–301. doi: 10.1128/br.33.2.264-301.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maelicke A., Sprinzl M., von der Haar F., Khwaja T. A., Cramer F. Structural studies on phenylalanine transfer ribonucleic acid from yeast with the spectroscopic label formycin. Eur J Biochem. 1974 Apr 16;43(3):617–625. doi: 10.1111/j.1432-1033.1974.tb03449.x. [DOI] [PubMed] [Google Scholar]
- Miller D. L., Hachmann J., Weissbach H. The reactions of the sulfhydryl groups on the elongation factors Tu and Ts. Arch Biochem Biophys. 1971 May;144(1):115–121. doi: 10.1016/0003-9861(71)90460-7. [DOI] [PubMed] [Google Scholar]
- Miller D. L., Weissbach H. Studies on the purification and properties of factor Tu from E. coli. Arch Biochem Biophys. 1970 Nov;141(1):26–37. doi: 10.1016/0003-9861(70)90102-5. [DOI] [PubMed] [Google Scholar]
- Ofengand J., Chen C. M. Inactivation of T u factor-guanosine triphosphate recognition and ribosome-binding ability by terminal oxidation-reduction of yeast phenylalanine transfer ribonucleic acid. J Biol Chem. 1972 Apr 10;247(7):2049–2058. [PubMed] [Google Scholar]
- Printz M. P., Miller D. L. Evidence for conformational changes in elongation factor Tu induced by GTP and GDP. Biochem Biophys Res Commun. 1973 Jul 2;53(1):149–156. doi: 10.1016/0006-291x(73)91413-7. [DOI] [PubMed] [Google Scholar]
- Ravel J. M., Shorey R. L., Froehner S., Shive W. A study of the enzymic transfer of aminoacyl-RNA to Escherichia coli ribosomes. Arch Biochem Biophys. 1968 May;125(2):514–526. doi: 10.1016/0003-9861(68)90609-7. [DOI] [PubMed] [Google Scholar]
- Ravel J. M., Shorey R. L., Shive W. Evidence for a guanine nucleotide-aminoacyl-RNA complex as an intermediate in the enzymatic transfer of aminoacyl-RNA to ribosomes. Biochem Biophys Res Commun. 1967 Oct 11;29(1):68–73. doi: 10.1016/0006-291x(67)90542-6. [DOI] [PubMed] [Google Scholar]
- Ringer D., Quiggle K., Chládek S. Recognition of the 3' terminus of 2'-O-aminoacyl transfer ribonucleic acid by the acceptor site of ribosomal peptidyltransferase. Biochemistry. 1975 Feb 11;14(3):514–520. doi: 10.1021/bi00674a009. [DOI] [PubMed] [Google Scholar]
- Schulman L. H., Pelka H., Sundari R. M. Structural requirements for recognition of Escherichia coli initiator and non-initiator transfer ribonucleic acids by bacterial T factor. J Biol Chem. 1974 Nov 25;249(22):7102–7110. [PubMed] [Google Scholar]
- Skoultchi A., Ono Y., Moon H. M., Lengyel P. On three complementary amino acid polymerization factors from Bacillus stearothermophilus: separation of a complex containing two of the factors, guanosine-5'-triphosphate and aminoacyl-transfer RNA. Proc Natl Acad Sci U S A. 1968 Jun;60(2):675–682. doi: 10.1073/pnas.60.2.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sundaralingam M., Arora S. K. Stereochemistry of nucleic acids and their constituents. IX. The conformation of the antibiotic puromycin dihydrochloride pentahydrate. Proc Natl Acad Sci U S A. 1969 Nov;64(3):1021–1026. doi: 10.1073/pnas.64.3.1021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WOLFENDEN R., RAMMLER D. H., LIPMANN F. ON THE SITE OF ESTERIFICATION OF AMINO ACIDS TO SOLUBLE RNA. Biochemistry. 1964 Mar;3:329–338. doi: 10.1021/bi00891a006. [DOI] [PubMed] [Google Scholar]
- Yathindra N., Sundaralingam M. Potential energy calculations on conformations of puromycin and 3'-terminal aminoacyl adenosines of transfer RNAs. Biochim Biophys Acta. 1973 Apr 21;308(7):17–27. doi: 10.1016/0005-2787(73)90117-2. [DOI] [PubMed] [Google Scholar]
