Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1975 Aug;72(8):3060–3064. doi: 10.1073/pnas.72.8.3060

Effect of chemical inactivating agents on glucocorticoid receptor proteins in mouse and hamster cells.

H A Young, W P Parks, E M Scolnick
PMCID: PMC432919  PMID: 171651

Abstract

The ffect of N-ethylmaleimide and iodoacetamide on the glucocorticoid receptor activity extracted from the cytosol of either mouse of hamster cells has been investigated. Treatment of mouse or hamster cytosol with N-ethylmaleimide or iodoacetamide rapidly inactivates the [3H]glucocorticoid hormone binding activity of either cytosol. Prebinding the glucocorticoid hormone, dexamethasone, to the cytosol receptor blocks the rapid inactivation of the receptor by N-ethylmaleimide. Treatment of the prebound hormone-receptor complex with iodoacetamide prevents the subsequent binding of the hormone-receptor complex to DNA without causing a dissociation of the complex. Although the conclusions may be limited by the lack of purity of the receptor, the results suggest that a sulfhydryl group is involved in the binding of glucocorticoid hormones to the receptor protein. In addition, the results suggest that iodoacetamide is inactivating a separate chemical site which is necessary for the binding of the hormone-receptor complex to DNA.

Full text

PDF
3060

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andre J., Rochefort H. In vitro binding of the estrogen receptor to DNA: absence of saturation at equilibrium. FEBS Lett. 1975 Feb 15;50(3):319–323. doi: 10.1016/0014-5793(75)80519-9. [DOI] [PubMed] [Google Scholar]
  2. Croce C. M., Koprowski H., Litwack G. Regulation of the corticosteroid inducibility of tyrosine aminotransferase in interspecific hybrid cells. Nature. 1974 Jun 28;249(460):839–841. doi: 10.1038/249839a0. [DOI] [PubMed] [Google Scholar]
  3. Gardner D. G., Wittliff J. L. Characterization of a distinct glucocorticoid-binding protein in the lactating mammary gland of the rat. Biochim Biophys Acta. 1973 Oct 5;320(3):617–627. doi: 10.1016/0304-4165(73)90141-4. [DOI] [PubMed] [Google Scholar]
  4. Gehring U., Tomkins G. M. A new mechanism for steroid unresponsiveness: loss of nuclear binding activity of a steroid hormone receptor. Cell. 1974 Nov;3(3):301–306. doi: 10.1016/0092-8674(74)90145-7. [DOI] [PubMed] [Google Scholar]
  5. Jensen E. V., DeSombre E. R. Mechanism of action of the female sex hormones. Annu Rev Biochem. 1972;41:203–230. doi: 10.1146/annurev.bi.41.070172.001223. [DOI] [PubMed] [Google Scholar]
  6. Litman R. M. A deoxyribonucleic acid polymerase from Micrococcus luteus (Micrococcus lysodeikticus) isolated on deoxyribonucleic acid-cellulose. J Biol Chem. 1968 Dec 10;243(23):6222–6233. [PubMed] [Google Scholar]
  7. Mayer M., Kaiser N., Milholland R. J., Rosen F. Cortisol binding in rat skeletal muscle. J Biol Chem. 1975 Feb 25;250(4):1207–1211. [PubMed] [Google Scholar]
  8. McGrath C. M. Replication of mammary tumor virus in tumor cell cultures: dependence on hormone-induced cellular organization. J Natl Cancer Inst. 1971 Aug;47(2):455–467. [PubMed] [Google Scholar]
  9. Parks W. P., Ransom J. C., Young H. A., Scolnick E. M. Mammary tumor virus induction by glucocorticoids. Characterization of specific transcriptional regulation. J Biol Chem. 1975 May 10;250(9):3330–3336. [PubMed] [Google Scholar]
  10. Parks W. P., Scolnick E. M., Kozikowski E. H. Dexamethasone stimulation of murine mammary tumor virus expression: a tissue culture source of virus. Science. 1974 Apr 12;184(4133):158–160. doi: 10.1126/science.184.4133.158. [DOI] [PubMed] [Google Scholar]
  11. Schaumburg B. P. Investigations on the glucocorticoid-binding protein from rat thymocytes. II. Stability, kinetics and specificity of binding of steroids. Biochim Biophys Acta. 1972 Jan 28;261(1):219–235. doi: 10.1016/0304-4165(72)90333-9. [DOI] [PubMed] [Google Scholar]
  12. Schutz G., Killewich L., Chen G., Feigelson P. Control of the mRNA for hepatic tryptophan oxygenase during hormonal and substrate induction. Proc Natl Acad Sci U S A. 1975 Mar;72(3):1017–1020. doi: 10.1073/pnas.72.3.1017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sibley C. H., Tomkins G. M. Mechanisms of steroid resistance. Cell. 1974 Aug;2(4):221–227. doi: 10.1016/0092-8674(74)90014-2. [DOI] [PubMed] [Google Scholar]
  14. Thompson E. B., Gelehrter T. D. Expression of tyrosine aminotransferase activity in somatic-cell heterokaryons: evidence for negative control of enzyme expression. Proc Natl Acad Sci U S A. 1971 Oct;68(10):2589–2593. doi: 10.1073/pnas.68.10.2589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Vallee B. L., Riordan J. F. Chemical approaches to the properties of active sites of enzymes. Annu Rev Biochem. 1969;38:733–794. doi: 10.1146/annurev.bi.38.070169.003505. [DOI] [PubMed] [Google Scholar]
  16. Watanabe H., Orth D. N., Toft D. O. Glucocorticoid receptors in pituitary tumor cells. I. Cytosol receptors. J Biol Chem. 1973 Nov 25;248(22):7625–7630. [PubMed] [Google Scholar]
  17. Yamamoto K. R., Stampfer M. R., Tomkins G. M. Receptors from glucocorticoid-sensitive lymphoma cells and two clases of insensitive clones: physical and DNA-binding properties. Proc Natl Acad Sci U S A. 1974 Oct;71(10):3901–3905. doi: 10.1073/pnas.71.10.3901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Young H. A., Scolnick E. M., Parks W. P. Glucocorticoid-receptor interaction and induction of murine mammary tumor virus. J Biol Chem. 1975 May 10;250(9):3337–3343. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES