Abstract
The genomes of fungi provide an important resource to resolve issues pertaining to their taxonomy, biology, and evolution. The genomes of Amanita jacksonii, Ceratocystis albifundus, a Fusarium circinatum variant, Huntiella omanensis, Leptographium procerum, Sclerotinia echinophila, and Rutstroemia sydowiana are presented in this genome announcement. These seven genomes are from a number of fungal pathogens and economically important species. The genome sizes range from 27 Mb in the case of Ceratocystis albifundus to 51.9 Mb for Rutstroemia sydowiana. The latter also encodes for a predicted 17 350 genes, more than double that of Ceratocystis albifundus. These genomes will add to the growing body of knowledge of these fungi and provide a value resource to researchers studying these fungi.
Keywords: Dispensable chromosome
Acknowledgments
The genome sequencing of Sclerotinia echinophila and Rutstroemia sydowiana was funded by the US Department of Agriculture (USDA) Agricultural Research Service. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the USDA. USDA is an equal opportunity provider and employer.
Sequencing the genome of Amanita jacksonii was made possible from grants from the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Royal Ontario Museum to J.M.M.; Graduate Scholarships from the Consejo Nacional de Ciencia y Tecnologia (Mexico) and the University of Toronto to SSR; and a Undergraduate Student Research Award from NSERC to M.S. We thank Hillary Hatzipetrakos and Tim Tully at Awenda Provincial Park for fieldwork assistance, and Lisa Bukovnik at Duke University for facilitating the genome sequencing. Renée Lebeuf, from the Cercle des Mycologues de Montréal, kindly provided the picture of Amanita jacksonii.
For the genomes of Leptographium procerum, Ceratocystis albifundus, Fusarium circinatum, and Huntiella omanensis financial support was provided by members of the Tree Protection Cooperative Program (TPCP), the Department of Science and Technology (DST)/National Research Foundation (NRF) Centre of Excellence in Tree Health Biotechnology, and the Genomics Research Institute of the University of Pretoria. This project was supported by multiple grants from the NRF, South Africa, including the grant specific unique reference number (UID) 83924. The grant holders acknowledge that opinions, findings and conclusions or recommendations expressed in publications generated by NRF supported research are that of the authors, and the NRF accepts no liability whatsoever in this regard.
For Leptographium procerum, we acknowledge the assistance of Tuan A. Duong (FABI, University of Pretoria) with the preparation of the sample for Illumina sequencing, and Kevin J. Dodds and Garret D. Dubois (USDA Forest Service, USA) for assistance with collections. For Ceratocystis albifundus we are grateful to Fourie Joubert for his assistance with the MAKER genome annotation pipeline tool.
REFERENCES
- Alexander SA, Horner WE, Lewis KJ. (1988) Leptographium procerum as a pathogen of pines. In: Leptographium Root Diseases on Conifers (Harrington TC, Cobb FW , eds.): 97–112 St Paul, MN: American Phytopathological Society Press. [Google Scholar]
- Al-Subhi AM, Al-Adawi AO, van Wyk M, Deadman ML, Wingfield (2006) Ceratocystis omanensis, a new species from diseased mango trees in Oman. Mycological Research 110: 237–245. [DOI] [PubMed] [Google Scholar]
- Amselem J, Cuomo CA, van Kan JAL, Viaud M, Benito EP, et al. (2011) Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genetics 7: e1002230. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barnes I, Nakabonge G, Roux J, Wingfield BD, Wingfield MJ. (2005) Comparison of populations of the wilt pathogen Ceratocystis albifundus in South Africa and Uganda. Plant Pathology 54: 189–195. [Google Scholar]
- Blanco-Ulate B, Allen G, Powell ALT, Cantu D. (2013) Draft genome sequence of Botrytis cinerea BcDW1, inoculum for noble rot of grape berries. Genome Announcements 1: e00252-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blin K, Medema MH, Kazempour D, Fischbach MA, Breitling R, et al. (2013) antiSMASH 2.0 — a versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Research 41: W204–W212. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boa ER. (2004) Wild Edible Fungi: a global overview of their use and importance to people. [Non-wood Forest Products, vol. 17.] Rome: Food & Agriculture Organization. [Google Scholar]
- Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. (2011) Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 27: 578–579. [DOI] [PubMed] [Google Scholar]
- Boetzer M, Pirovano W. (2012)) Toward almost closed genomes with GapFiller. Genome Biology 13: R56. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boisvert S, Laviolette F, Corbeil J. (2010) Ray: simultaneous assembly of reads from a mix of high– throughput sequencing technologies. Journal of Computational Biology 17: 1519–1533. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buermans HPJ, den Dunnen JT. (2014) Next generation sequencing technology: Advances and applications. Biochimica et Biophysica Acta 1842: 1932–1941. [DOI] [PubMed] [Google Scholar]
- Cantarel BL, Korf I, Robb SM, Parra G, Ross E, et al. (2008) MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Research 18: 188–196. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carbone I, Kohn LM. (1993) Ribosomal DNA sequencing divergence within internal transcribed spacer 1 of the Sclerotiniaceae. Mycologia 85: 415–427. [Google Scholar]
- Coleman JJ, Rounsley SD, Rodriguez-Carres M, Kuo A, Wasmann CC, et al. (2009) The genome of Nectria haematococca: Contribution of supernumerary chromosomes to gene expansion. PLoS Genetics 5: e10000618. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Collemare J, Lebrun M-H. (2012) Fungal secondary metabolites: ancient toxins and novel effectors in plant-microbe interactions. In: Effectors in Plant-Microbe Interactions (Martin F, Kamoun S, eds): 377–399 UK: John Wiley & Sons. [Google Scholar]
- Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, et al. (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21: 3674–3676. [DOI] [PubMed] [Google Scholar]
- Croll D, McDonald BA. (2012) The accessory genome as a cradle for adaptive evolution in pathogens. PLoS Pathogens 8: e1002608. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Beer ZW, Duong TA, Barnes I, Wingfield BD, Wingfield MJ. (2014) Redefining Ceratocystis and allied genera. Studies in Mycology 79: 187–219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Beer ZW, Wingfield MJ. (2013) Emerging lineages in the Ophiostomatales. In: The Ophiostomatoid Fungi: expanding frontiers (Seifert KA, de Beer ZW, Wingfield MJ, eds): 21–46 [CBS Biodiversity Series no. 12.] Utrecht: CBS-KNAW Fungal Biodiversity Centre. [Google Scholar]
- DiGuistini S, Wang Y, Liao NY, Taylor G, Tanguay P, et al (2011) Genome and transcriptome analyses of the mountain pine beetle-fungal symbiont Grosmannia clavigera, a lodgepole pine pathogen. Proceeding of the National Academy of Sciences, USA 108: 2504–2509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duong TA, de Beer ZW, Wingfield BD, Wingfield MJ. (2013) Characterization of the mating-type genes in Leptographium procerum and Leptographium profanum. Fungal Biology 117: 411–421. [DOI] [PubMed] [Google Scholar]
- Fuckel L. (1870) [“1869”] Symbolae mycological: Beiträge zur Kenntnis der Rheinischen Pilze. Jahrbücher des Nassauischen Vereins für Naturkunde 23–24: 1–459. [Google Scholar]
- Geiser DM, Aoki T, Bacon CW, Baker SE, Bhattacharayya MB, et al. (2013) One Fungus, One Name: defining the genus Fusarium in a scientifically robust way that preserves longstanding use. Phytopathology 103: 400–408. [DOI] [PubMed] [Google Scholar]
- Gurevich A, Saveliev V, Vyahhi N, Tesler G. (2013) QUAST: quality assessment tool for genome assemblies. Bioinformatics 29: 1072–1075. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hallen HE, Luo H, Scott-Craig JS, Walton JD. (2007) Gene family encoding the major toxins of lethal Amanita mushrooms. Proceeding of the National Academy of Sciences, USA 104: 19097–19101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heath RN, Wingfield MJ, van Wyk M, Roux J. (2009) Insect associates of Ceratocystis albifundus and patterns of association in a native savanna ecosystem in South Africa. Environmental Entomology 38: 356–364. [DOI] [PubMed] [Google Scholar]
- Hepting GH, Roth ER. (1946) Pitch canker, a new disease of some southern pines. Journal of Forestry 44: 742–744. [Google Scholar]
- Hess J, Skrede I, Wolfe BE, LaButti K, Ohm RA, et al. (2014) Transposable element dynamics among asymbiotic and ectomycorrhizal Amanita fungi. Genome Biology and Evolution 6: 1564–1578. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hinz UG, Fivaz J, Girod PA, Zyrd JP. (1997) The gene coding for the DOPA dioxygenase involved in betalain biosynthesis in Amanita muscaria and its regulation. Molecular and General Genetics 256: 1–6. [DOI] [PubMed] [Google Scholar]
- Hoff KJ, Stanke M. (2013) WebAUGUSTUS – a web service for training AUGUSTUS and predicting genes in eukaryotes. Nucleic Acids Research 41: W123–W128. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holst-Jensen A, Kohn LM, Schumacher T. (1997) Nuclear rDNA phylogeny of the Sclerotiniaceae. Mycologia 89: 885–899. [Google Scholar]
- Holst-Jensen A, Vaage M, Schumacher T. (1998) Approximation to the phylogeny of Sclerotinia and related genera. Nordic Journal of Botany 18: 705–719. [Google Scholar]
- Iturritxa E, Ganley RJ, Wright J, Heppe E, Steenkamp ET, et al. (2011) A genetically homogenous population of Fusarium circinatum causes pitch canker of Pinus radiata in the Basque Country, Spain. Fungal Biology 115: 288–295. [DOI] [PubMed] [Google Scholar]
- Jacobs K, Wingfield MJ. (2001) Leptographium Species: tree pathogens, insect associates, and agents of blue-stain. St Paul, MN: American Phytopathological Society Press. [Google Scholar]
- Jacobs K, Wingfield MJ, Wingfield BD. (2001) Phylogenetic relationships in Leptographium based on morphological and molecular characters. Canadian Journal of Botany 79: 719–732. [Google Scholar]
- Jeong H, Lee S, Choi GJ, Lee T, Yun S-H. (2013) Draft genome sequence of Fusarium fujikuroi B14, the causal agent of the bakanae disease of rice. Genome Announcements 1:e00035-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnston PJ, Park D. (2013) The phylogenetic position of Lanzia berggrenii and its sister species. Mycostema 32: 366–385. [Google Scholar]
- Jurgenson JE, Zeller KA, Leslie JF. (2002) Expanded genetic map of Gibberella moniliformis (Fusarium verticillioides). Applied and Environmental Microbiology 68: 1972–1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klepzig KD, Raffa KF, Smalley EB. (1991) Association of an insect-fungal complex with red pine decline in Wisconsin. Forest Science 37: 1119–1139. [Google Scholar]
- Kohn LM. (1979) Delimitation of the economically important plant pathogenic Sclerotinia species. Phytopathology 69: 881–886. [Google Scholar]
- Kvas M, Marasas WFO, Wingfield BD, Wingfield MJ, Steenkamp ET. (2009) Diversity and evolution of Fusarium species in the Gibberella fujikuroi complex. Fungal Diversity 34: 1–21. [Google Scholar]
- Lackner AL, Alexander SA. (1982) Occurrence and pathogenicity of Verticicladiella procera in Christmas tree plantations in Virginia. Plant Disease 66: 211–212. [Google Scholar]
- Lu M, Wingfield MJ, Gillette NE, Mori SR, Sun JH. (2010) Complex interactions among host pines and fungi vectored by an invasive bark beetle. New Phytologist 187: 859–866. [DOI] [PubMed] [Google Scholar]
- Lu M, Wingfield MJ, Gillette NE, Sun JH. (2011) Do novel genotypes drive the success of an invasive bark beetle-fungus complex? Implications for potential reinvasion. Ecology 92: 2013–2019. [DOI] [PubMed] [Google Scholar]
- Lu M, Zhou XD, de Beer ZW, Wingfield MJ, Sun JH. (2009a) Ophiostomatoid fungi associated with the invasive pine-infesting bark beetle, Dendroctonus valens, in China. Fungal Diversity 38: 133–145. [Google Scholar]
- Lu Q, Decock C, Zhang XY, Maraite H. (2009b) Ophiostomatoid fungi (Ascomycota) associated with Pinus tabuliformis infested by Dendroctonus valens (Coleoptera) in northern China and an assessment of their pathogenicity on mature trees. Antonie Van Leeuwenhoek 96: 275–293. [DOI] [PubMed] [Google Scholar]
- Ma L-J, van der Does HC, Borkovich KA, Coleman JJ, Daboussi M-J, et al. (2010) Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464: 367–373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mardanov AV, Beletsky AV, Kadnikov VV, Ignatov AN, Ravin NV. (2014) Draft genome sequence of Sclerotinia borealis, a psychrophilic plant pathogenic fungus. Genome Announcements 2: e01175-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin F, Cullen D, Hibbett D, Pisabarro A, Spatafora JW, et al. (2011) Sequencing the fungal tree of life. New Phytologist 190: 818–821. [DOI] [PubMed] [Google Scholar]
- Masuya H, Yamaoka Y, Wingfield MJ. (2013) Ophiostomatoid fungi and their associations with bark beetles in Japan. In: The Ophiostomatoid Fungi: expanding frontiers (Seifert KA, de Beer ZW, Wingfield MJ, eds): 77–90 [CBS Biodiversity Series no. 12.] Utrecht: CBS-KNAW Fungal Biodiversity Centre. [Google Scholar]
- Metzker ML. (2009) Sequencing technologies—the next generation. Nature Reviews Genetics 11: 31–46. [DOI] [PubMed] [Google Scholar]
- Möller EM, Bahnweg G, Sandermann H, Geiger HH. (1992) A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies and infected plant tissues. Nucleic Acids Research 20: 6115–6116. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moreno-Hagelsieb G, Latimer K. (2008) Choosing BLAST options for better detection of orthologs as reciprocal best hits. Bioinformatics 24: 319–324. [DOI] [PubMed] [Google Scholar]
- Morris MJ, Wingfield MJ, de Beer C. (1993) Gummosis and wilt of Acacia mearnsii in South Africa caused by Ceratocystis fimbriata. Plant Pathology 42: 814–817. [Google Scholar]
- Murphy C, Powlowski J, Wu M, Butler G, Tsang A. (2011) Curation of characterized glycoside hydrolases of fungal origin. Database doi:10.1093/database/bar020. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ojeda DI, Dhillon B, Tsui CKM, Hamelin RC. (2014) Single-nucleotide polymorphism discovery in Leptographium longiclavatum, a mountain pine beetle-associated symbiotic fungus, using whole-genome resequencing. Molecular Ecology Resources 14: 401–410. [DOI] [PubMed] [Google Scholar]
- Parra G, Bradnam K, Korf I. (2007) CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23: 1061–1067. [DOI] [PubMed] [Google Scholar]
- Parra G, Bradnam K, Ning Z, Keane T, Korf I. (2008) Assessing the gene space in draft genomes. Nucleic Acids Research 37: 289–297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pegler DN. (2002) Useful fungi of the world: Caesar’s mushroom and the Christmas mushroom. Mycologist 16: 140–141. [Google Scholar]
- Petersen TN, Brunak S, von Heijne G, Nielsen H. (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods 8: 785–786. [DOI] [PubMed] [Google Scholar]
- Reay SD, Walsh PJ, Ram A, Farrell RL. (2002) The invasion of Pinus radiata seedlings by sapstain fungi, following attack by the Black Pine Bark Beetle, Hylastes ater (Coleoptera: Scolytidae). Forest Ecology and Management 165: 47–56. [Google Scholar]
- Roux J, Dunlop R, Wingfield MJ. (1999) Susceptibility of elite Acacia mearnsii families to Ceratocystis wilt in south Africa. Journal of Forest Research 4: 187–190. [Google Scholar]
- Roux J, Heath RN, Labuschagne L, Nkuekam GK, Wingfield MJ. (2007) Occurrence of the wattle wilt pathogen, Ceratocystis albifundus on native South African trees. Forest Pathology 37: 292–302. [Google Scholar]
- Roux J, Wingfield MJ. (2013) Ceratocystis species on the African continent, with particular reference to C. albifundus, an African species in the C. fimbriata sensu lato species complex, In: Ophiostomatoid Fungi: expanding frontiers (Seifert KA, de Beer ZW, Wingfield MJ, eds): 131–138 [CBS Biodiversity Series no. 12.] Utrecht: CBS-KNAW Fungal Biodiversity Centre. [Google Scholar]
- Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM, et al. (2009) ABySS: A parallel assembler for short read sequence data. Genome Research 19: 1117–1123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smit AFA, Hubley R, Green P. (1996) RepeatMasker Open-3.0. http://www.repeatmasker.org [Google Scholar]
- Stanke M, Diekhans M, Baertsch R, Haussler D. (2008) Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 24: 637–644. [DOI] [PubMed] [Google Scholar]
- Stanke M, Steinkamp R, Waack S, Morgenstern B. (2004) AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic Acids Research 32: W309–W312. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stanke M, Tzvetkova A, Morgenstern B. (2006) AUGUSTUS at EGASP: using EST, protein and genomic alignments for improved gene prediction in the human genome.Genome Biology 7: S11. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strack D, Vogt T, Schliemann W. (2003) Recent advances in betalain research. Phytochemistry 62: 247–269. [DOI] [PubMed] [Google Scholar]
- Sun JH, Lu M, Gillette NE, Wingfield MJ. (2013) Red turpentine beetle: innocuous native becomes invasive tree killer in China. Annual Reviews of Entomology 58: 293–311. [DOI] [PubMed] [Google Scholar]
- Taerum SJ, Duong TA, de Beer ZW, Gillette NE, Sun JH, et al. (2013) Large shift in symbiont assemblage in the invasive red turpentine beetle. PLoS ONE 8: e78126. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor AFS, Alexander I. (2005) The ectomycorrhizal symbiosis: life in the real world. Mycologist 19: 102–112. [Google Scholar]
- van der Nest MA, Bihon W, de Vos L, Naidoo K, Roodt D. et al. (2014) Draft genome sequences of Diplodia sapinea, Ceratocystis manginecans, and Ceratocystis moniliformis. IMA Fungus 5: 135–140. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Wyk M, Al Adawi AO, Khan IA, Deadman ML, Al Jahwari AA, et al (2007) Ceratocystis manginecans sp. nov., causal agent of a destructive mango wilt disease in Oman and Pakistan. Fungal Diversity 27: 213–230. [Google Scholar]
- van Wyk M, Roux J, Barnes I, Wingfield BD, Chhetri DB, et al. (2004) Ceratocystis bhutanensis sp. nov., associated with the bark beetle Ips schmutzenhoferi on Picea spinulosa in Bhutan. Studies in Mycology 50: 365–379. [Google Scholar]
- Vetter J. (1998) Toxins of Amanita phalloides. Toxicon 36: 13–24. [DOI] [PubMed] [Google Scholar]
- Whetzel HH. (1945) A synopsis of the genera and species of the Sclerotiniaceae, a family of stromatic inoperculate discomycetes. Mycologia 37: 648–714. [Google Scholar]
- Wiemann P, Sieber CMK, von Bargen KW, Studt L, Niehaus E-M, et al. (2013) Deciphering the cryptic genome: Genome-wide analyses of the rice pathogen Fusarium fujikuroi reveal complex regulation of secondary metabolism and novel metabolites. PLoS Pathogens 9: e1003475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilken PM, Steenkamp ET, Wingfield MJ, de Beer ZW, Wingfield BD. (2013) Draft nuclear genome sequence for the plant pathogen, Ceratocystis fimbriata. IMA Fungus 4: 357–358. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wingfield BD, Steenkamp ET, Santana QC, Coetzee MPA, Bam S, et al. (2012) First fungal genome sequence from Africa: A preliminary analysis. South African Journal of Science 108: 1–2. [Google Scholar]
- Wingfield BD, van Wyk M, Roos H, Wingfield MJ. (2013b) Ceratocystis: emerging evidence for discrete generic boundaries In: Ophiostomatoid Fungi: expanding frontiers (Seifert KA, de Beer ZW, Wingfield MJ, eds): 57–64 [CBS Biodiversity Series no. 12.] Utrecht: CBS-KNAW Fungal Biodiversity Centre. [Google Scholar]
- Wingfield MJ, de Beer C, Visser C, Wingfield BD. (1996) A new Ceratocystis species defined using morphological and ribosomal DNA sequence comparisons. Systematic and Applied Microbiology 19: 191–202. [Google Scholar]
- Wingfield MJ, Capretti P, MacKenzie M. (1988) Leptographium spp. as root pathogens of conifers. An international perspective. In: Leptographium root diseases on conifers (Harrington TC, Cobb FW, eds.): 113–128 St Paul, MN: American Phytopathological Society Press. [Google Scholar]
- Wingfield MJ, Roux J, Wingfield BD, Slippers B. (2013a) Ceratocystis and Ophiostoma: international spread, new associations and plant health. In: Ophiostomatoid Fungi: expanding frontiers (Seifert KA, de Beer ZW, Wingfield MJ, eds): 191–200 [CBS Biodiversity Series no. 12.] Utrecht: CBS-KNAW Fungal Biodiversity Centre. [Google Scholar]
- Wolfe BE, Tulloss RE, Pringle A. (2012) The irreversible loss of a decomposition pathway marks the single origin of an ectomycorrhizal symbiosis. PLoS ONE 7: e39597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu J-R, Yan K, Dickman MB, Leslie JF. (1995) Electrophoretic karyotypes distinguish the biological species of Gibberella fujikuroi (Fusarium section Liseola). Molecular Plant-Microbe Interactions 8: 74–84. [Google Scholar]
- Yin M, Duong TA, Wingfield MJ, Zhou XD, de Beer ZW. (2015) Taxonomy and phylogeny of the Leptographium procerum complex, including L. sinense sp. nov. and L. longiconidiophorum sp. nov. Antonie van Leeuwenhoek. [DOI] [PubMed] [Google Scholar]
- Yin Y, Mao X, Yang JC, Chen X, Mao F, et al. (2012) dbCAN: a web resource for automated carbohydrate-active enzyme annotation, Nucleic Acids Research 40: W445–W451. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zerbino DR, Birney E. (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Research 18: 821–829. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhao Z, Liu H, Wang C, Xu J-R. (2013) Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC Genomics 14: 274. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zolan ME, Pukkila PJ. (1986) Inheritance of DNA methylation in Coprinus cinereus. Molecular and Cellular Biology 6: 195–200. [DOI] [PMC free article] [PubMed] [Google Scholar]