Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1975 Aug;72(8):3245–3249. doi: 10.1073/pnas.72.8.3245

Acetylcholine receptors at neuromuscular synapses: phylogenetic differences detected by snake alpha-neurotoxins.

S J Burden, H C Hartzell, D Yoshikami
PMCID: PMC432959  PMID: 1081230

Abstract

Phylogenetic differences in acetylcholine receptors from skeletal neuromuscular synapses of various species of snakes and lizards have been investigated, using the snake venom alpha-neurotoxins alpha-atratoxin (cobrotoxin) and alpha-bungarotoxin. The acetylcholine receptors of the phylogenetically primitive lizards, like those from all other vertebrates previously tested, are blocked by these alpha-neurotoxins. In contrast, receptors from snakes and advanced lizards are insensitive to one or both of the toxins. It is suggested that toxin-resistant acetylcholine receptors appeared early in the evolution of Squamata and preceded the appearance of alpha-neurotoxins.

Full text

PDF
3245

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albuquerque E. X., Warnick J. E., Sansone F. M., Daly J. The pharmacology of batrachotoxin. V. A comparative study of membrane properties and the effect of batrachotoxin on sartorius muscles of the frogs Phyllobates aurotaenia and Rana pipiens. J Pharmacol Exp Ther. 1973 Feb;184(2):315–329. [PubMed] [Google Scholar]
  2. Berg D. K., Kelly R. B., Sargent P. B., Williamson P., Hall Z. W. Binding of -bungarotoxin to acetylcholine receptors in mammalian muscle (snake venom-denervated muscle-neonatal muscle-rat diaphragm-SDS-polyacrylamide gel electrophoresis). Proc Natl Acad Sci U S A. 1972 Jan;69(1):147–151. doi: 10.1073/pnas.69.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brockes J. P., Hall Z. W. Acetylcholine receptors in normal and denervated rat diaphragm muscle. I. Purification and interaction with [125I]-alpha-bungarotoxin. Biochemistry. 1975 May 20;14(10):2092–2099. doi: 10.1021/bi00681a008. [DOI] [PubMed] [Google Scholar]
  4. Fambrough D. M., Hartzell H. C. Acetylcholine receptors: number and distribution at neuromuscular junctions in rat diaphragm. Science. 1972 Apr 14;176(4031):189–191. doi: 10.1126/science.176.4031.189. [DOI] [PubMed] [Google Scholar]
  5. Gage P. W., Armstrong C. M. Miniature end-plate currents in voltage-clamped muscle fibre. Nature. 1968 Apr 27;218(5139):363–365. doi: 10.1038/218363b0. [DOI] [PubMed] [Google Scholar]
  6. Hess A. The sarcoplasmic reticulum, the T system, and the motor terminals of slow and twitch muscle fibers in the garter snake. J Cell Biol. 1965 Aug;26(2):467–476. doi: 10.1083/jcb.26.2.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hubbard J. I. Microphysiology of vertebrate neuromuscular transmission. Physiol Rev. 1973 Jul;53(3):674–723. doi: 10.1152/physrev.1973.53.3.674. [DOI] [PubMed] [Google Scholar]
  8. KARNOVSKY M. J. THE LOCALIZATION OF CHOLINESTERASE ACTIVITY IN RAT CARDIAC MUSCLE BY ELECTRON MICROSCOPY. J Cell Biol. 1964 Nov;23:217–232. doi: 10.1083/jcb.23.2.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kuffler S. W., Yoshikami D. The distribution of acetylcholine sensitivity at the post-synaptic membrane of vertebrate skeletal twitch muscles: iontophoretic mapping in the micron range. J Physiol. 1975 Jan;244(3):703–730. doi: 10.1113/jphysiol.1975.sp010821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lee C. Y., Chang C. C., Chen Y. M. Reversibility of neuromuscular blockade by neurotoxins from elapid and sea snake venoms. Taiwan Yi Xue Hui Za Zhi. 1972 Jun 28;71(6):344–349. [PubMed] [Google Scholar]
  11. Lee C. Y. Chemistry and pharmacology of polypeptide toxins in snake venoms. Annu Rev Pharmacol. 1972;12:265–286. doi: 10.1146/annurev.pa.12.040172.001405. [DOI] [PubMed] [Google Scholar]
  12. Miledi R., Potter L. T. Acetylcholine receptors in muscle fibres. Nature. 1971 Oct 29;233(5322):599–603. doi: 10.1038/233599a0. [DOI] [PubMed] [Google Scholar]
  13. Narahashi T. Chemicals as tools in the study of excitable membranes. Physiol Rev. 1974 Oct;54(4):813–889. doi: 10.1152/physrev.1974.54.4.813. [DOI] [PubMed] [Google Scholar]
  14. Proske U., Vaughan P. Histological and electrophysiological investigation of lizard skeletal muscle. J Physiol. 1968 Dec;199(3):495–509. doi: 10.1113/jphysiol.1968.sp008665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. ROBERTSON J. D. The ultrastructure of a reptilian myoneural junction. J Biophys Biochem Cytol. 1956 Jul 25;2(4):381–394. doi: 10.1083/jcb.2.4.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ridge R. M. Different types of extrafusal muscle fibres in snake costocutaneous muscles. J Physiol. 1971 Sep;217(2):393–418. doi: 10.1113/jphysiol.1971.sp009578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Strydom D. J. Phylogenetic relationships of proteroglyphae toxins. Toxicon. 1972 Jan;10(1):39–45. doi: 10.1016/0041-0101(72)90088-8. [DOI] [PubMed] [Google Scholar]
  18. TAKEUCHI A., TAKEUCHI N. Active phase of frog's end-plate potential. J Neurophysiol. 1959 Jul;22(4):395–411. doi: 10.1152/jn.1959.22.4.395. [DOI] [PubMed] [Google Scholar]
  19. Tu A. T. Neurotoxins of animal venoms: snakes. Annu Rev Biochem. 1973;42:235–258. doi: 10.1146/annurev.bi.42.070173.001315. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES