Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1975 Sep;72(9):3369–3373. doi: 10.1073/pnas.72.9.3369

Sequential processing of precursor tRNA molecules in Escherichia coli.

H Sakano, Y Shimura
PMCID: PMC432994  PMID: 1103144

Abstract

In a temperature-sensitive mutant of E. coli defective in tRNA biosynthesis, many tRNA precursors, including monomeric and multimeric forms, accumulate. Some of the multimeric precursors contain three or more tRNA sequences within a molecule. These large precursors were cleaved by cell extracts first into intermediate size pieces which were subsequently processed by RNase P. On the basis of heat stability of mutant cell extracts, the endonuclease responsible for the initial cleavage appears to be distinct from RNase P and is designated RNase O. One of the monomeric precursors was shown to be processed first by RNase P and the product subsequently cleaved further into a smaller molecule. The nuclease responsible for this second cleavage also appears to be distinct from RNase P and is designated RNase Q. The functions of these nucleases are sequential in the trimming process with respect to that of RNase P; RNase O works prior to RNase P and RNase Q after RNase P but in both cases, not vice versa.

Full text

PDF
3369

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altman S. Isolation of tyrosine tRNA precursor molecules. Nat New Biol. 1971 Jan 6;229(1):19–21. doi: 10.1038/newbio229019a0. [DOI] [PubMed] [Google Scholar]
  2. Altman S., Smith J. D. Tyrosine tRNA precursor molecule polynucleotide sequence. Nat New Biol. 1971 Sep 8;233(36):35–39. doi: 10.1038/newbio233035a0. [DOI] [PubMed] [Google Scholar]
  3. Dube S. K., Marcker K. A., Yudelevich A. The nucleotide sequence of a leucine transfer RNA from E. coli. FEBS Lett. 1970 Sep 6;9(3):168–170. doi: 10.1016/0014-5793(70)80345-3. [DOI] [PubMed] [Google Scholar]
  4. Nathans D. Cell-free protein synthesis directed by coliphage MS2 RNA: synthesis of intact viral coat protein and other products. J Mol Biol. 1965 Sep;13(2):521–531. doi: 10.1016/s0022-2836(65)80114-0. [DOI] [PubMed] [Google Scholar]
  5. Ozeki H., Sakano H., Yamada S., Ikemura T., Shimura Y. Temperature-sensitive mutants of Escherichia coli defective in tRNA biosynthesis. Brookhaven Symp Biol. 1975 Jul;(26):89–105. [PubMed] [Google Scholar]
  6. Peacock A. C., Dingman C. W. Resolution of multiple ribonucleic acid species by polyacrylamide gel electrophoresis. Biochemistry. 1967 Jun;6(6):1818–1827. doi: 10.1021/bi00858a033. [DOI] [PubMed] [Google Scholar]
  7. Robertson H. D., Altman S., Smith J. D. Purification and properties of a specific Escherichia coli ribonuclease which cleaves a tyrosine transfer ribonucleic acid presursor. J Biol Chem. 1972 Aug 25;247(16):5243–5251. [PubMed] [Google Scholar]
  8. Sakano H., Shimura Y., Ozeki H. Selective modification of nucleosides of tRNA precursors accumulated in a temperature sensitive mutant of Escherichia coli. FEBS Lett. 1974 Nov 1;48(1):117–121. doi: 10.1016/0014-5793(74)81076-8. [DOI] [PubMed] [Google Scholar]
  9. Sakano H., Shimura Y., Ozeki H. Studies on T4-tRNA biosynthesis: accumulation of precursor tRNA molecules in a temperature sensitive mutant of Escherichia coli. FEBS Lett. 1974 Apr 1;40(2):312–316. doi: 10.1016/0014-5793(74)80252-8. [DOI] [PubMed] [Google Scholar]
  10. Sakano H., Yamada S., Ikemura T., Shimura Y., Ozeki H. Temperature sensitive mutants of Escherichia coli for tRNA synthesis. Nucleic Acids Res. 1974 Mar;1(3):355–371. doi: 10.1093/nar/1.3.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Schedl P., Primakoff P. Mutants of Escherichia coli thermosensitive for the synthesis of transfer RNA. Proc Natl Acad Sci U S A. 1973 Jul;70(7):2091–2095. doi: 10.1073/pnas.70.7.2091. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES