Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1975 Sep;72(9):3374–3376. doi: 10.1073/pnas.72.9.3374

Bacterial luciferase requires one reduced flavin for light emission.

J E Becvar, J W Hastings
PMCID: PMC432995  PMID: 1059124

Abstract

Recent reports revive a hypothesis that the bacterial bioluminescence reaction involves two reduced flavin mononucleotide molecules per enzyme turnover. A two-flavin mechanism requires that the two flavins bind simultaneously or sequentially to the same or different sites on luciferase during a catalytic cycle. Measurements using equilibrium techniques show that the luciferase dimer has only a single reduced flavin binding site. Quantum yield results demonstrate that bioluminescence requires only one reduced flavin per luciferase, ruling out mechanisms involving either two reduced flavins or one reduced flavin plus one oxidized flavin per catalytic cycle.

Full text

PDF
3374

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldwin T. O., Nicoli M. Z., Becvar J. E., Hastings J. W. Bacterial luciferase. Binding of oxidized flavin mononucleotide. J Biol Chem. 1975 Apr 25;250(8):2763–2768. [PubMed] [Google Scholar]
  2. Baldwin T. O. The binding and spectral alterations of oxidized flavin mononucleotide by bacterial luciferase. Biochem Biophys Res Commun. 1974 Apr 23;57(4):1000–1005. doi: 10.1016/0006-291x(74)90795-5. [DOI] [PubMed] [Google Scholar]
  3. Cline T. W., Hastings J. W. Mutationally altered bacterial luciferase. Implications for subunit functions. Biochemistry. 1972 Aug 29;11(18):3359–3370. doi: 10.1021/bi00768a008. [DOI] [PubMed] [Google Scholar]
  4. Dunn D. K., Michaliszyn G. A., Bogacki I. G., Meighen E. A. Conversion of aldehyde to acid in the bacterial bioluminescent reaction. Biochemistry. 1973 Nov 20;12(24):4911–4918. doi: 10.1021/bi00748a016. [DOI] [PubMed] [Google Scholar]
  5. Eberhard A., Hastings J. W. A postulated mechanism for the bioluminescent oxidation of reduced flavin mononucleotide. Biochem Biophys Res Commun. 1972 Apr 28;47(2):348–353. doi: 10.1016/0006-291x(72)90719-x. [DOI] [PubMed] [Google Scholar]
  6. Friedland J., Hastings J. W. Nonidentical subunits of bacterial luciferase: their isolation and recombination to form active enzyme. Proc Natl Acad Sci U S A. 1967 Dec;58(6):2336–2342. doi: 10.1073/pnas.58.6.2336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HASTINGS J. W., SPUDICH J., MALNIC G. THE INFLUENCE OF ALDEHYDE CHAIN LENGTH UPON THE RELATIVE QUANTUM YIELD OF THE BIOLUMINESCENT REACTION OF ACHROMOBACTER FISCHERI. J Biol Chem. 1963 Sep;238:3100–3105. [PubMed] [Google Scholar]
  8. Hastings J. W., Balny C. The oxygenated bacterial luciferase-flavin intermediate. Reaction products via the light and dark pathways. J Biol Chem. 1975 Sep 25;250(18):7288–7293. [PubMed] [Google Scholar]
  9. Hastings J. W., Weber K., Friedland J., Eberhard A., Mitchell G. W., Gunsalus A. Structurally distinct bacterial luciferases. Biochemistry. 1969 Dec;8(12):4681–4689. doi: 10.1021/bi00840a004. [DOI] [PubMed] [Google Scholar]
  10. Lee J. Bacterial bioluminescence. Quantum yields and stoichiometry of the reactants reduced flavin mononucleotide, dodecanal, and oxygen, and of a product hydrogen peroxide. Biochemistry. 1972 Aug 29;11(18):3350–3359. doi: 10.1021/bi00768a007. [DOI] [PubMed] [Google Scholar]
  11. McCapra F., Hysert D. W. Bacterial bioluminescence-identification of fatty acid as product, its quantum yield and a suggested mechanism. Biochem Biophys Res Commun. 1973 May 1;52(1):298–304. doi: 10.1016/0006-291x(73)90987-x. [DOI] [PubMed] [Google Scholar]
  12. McELROY W. D., GREEN A. A. Enzymatic properties of bacterial luciferase. Arch Biochem Biophys. 1955 May;56(1):240–255. doi: 10.1016/0003-9861(55)90353-2. [DOI] [PubMed] [Google Scholar]
  13. Meighen E. A., Hastings J. W. Binding site determination from kinetic data. Reduced flavin mononucleotide binding to bacterial luciferase. J Biol Chem. 1971 Dec 25;246(24):7666–7674. [PubMed] [Google Scholar]
  14. Meighen E. A., Nicoli M. Z., Hastings J. W. Functional differences of the nonidentical subunits of bacterial luciferase. Properties of hybrids of native and chemically modified bacterial luciferase. Biochemistry. 1971 Oct 26;10(22):4069–4073. doi: 10.1021/bi00798a009. [DOI] [PubMed] [Google Scholar]
  15. Meighen E. A., Nicoli M. Z., Hastings J. W. Hybridization of bacterial luciferase with a variant produced by chemical modification. Biochemistry. 1971 Oct 26;10(22):4062–4068. doi: 10.1021/bi00798a008. [DOI] [PubMed] [Google Scholar]
  16. Mitchell G. W., Hastings J. W. A stable, inexpensive, solid-state photomultiplier photometer. Anal Biochem. 1971 Jan;39(1):243–250. doi: 10.1016/0003-2697(71)90481-7. [DOI] [PubMed] [Google Scholar]
  17. Shimomura O., Johnson F. H., Kohama Y. Reactions involved in bioluminescence systems of limpet (Latia neritoides) and luminous bacteria. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2086–2089. doi: 10.1073/pnas.69.8.2086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Vigny A., Michelson A. M. Studies in bioluminescence. 13. Bioluminescence bactérienne: mise en évidence et idenification du produit de transformation de l'aldéhyde. Biochimie. 1974;56(1):171–176. doi: 10.1016/s0300-9084(74)80367-6. [DOI] [PubMed] [Google Scholar]
  19. WHITBY L. G. A new method for preparing flavin-adenine dinucleotide. Biochem J. 1953 Jun;54(3):437–442. doi: 10.1042/bj0540437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Watanabe T., Tomita G., Nakamura T. Studies on luciferase from Photobacterium phosphoreum. VI. Stoichiometry and mode of binding of FMNH2 and O2 to stripped luciferase. J Biochem. 1974 Jun;75(6):1249–1255. doi: 10.1093/oxfordjournals.jbchem.a130508. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES