Abstract
We have examined the redox equilibria of azidomethemoglobin (low-spin) and fluoromethemoglobin (high-spin). We have derived a modified Hill equation which includes the tetramer--dimer equilibrium of the oxidized form, and also generalized the two-state model to incorporate ligand binding to the ferriheme. The pH dependence of the redox Hill's constant for fluoromethemoglobin is the same as that for methemoglobin, demonstrating that this dependence and the marked cooperativity achieved (n = 2.2) are not coupled to changes of the ferriheme spin state. The redox Hill's constant for azidomethemoglobin, however, is as large as the oxygenation Hill's constant (n approximately 2.7) and is also roughly pH independent.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ackers G. K., Halvorson H. R. The linkage between oxygenation and subunit dissociation in human hemoglobin. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4312–4316. doi: 10.1073/pnas.71.11.4312. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BRUNORI M., WYMAN J., ANTONINI E., ROSSI-FANELLI A. STUDIES ON THE OXIDATION-REDUCTION POTENTIALS OF HEME PROTEINS. V. THE OXIDATION BOHR EFFECT IN NORMAL HUMAN HEMOGLOBIN AND HUMAN HEMOGLOBIN DIGESTED WITH CARBOXYPEPTIDASE A. J Biol Chem. 1965 Aug;240:3317–3324. [PubMed] [Google Scholar]
- Banerjee R., Henry Y., Cassoly R. Cooperative ligand binding by ferrihemoglobin. Eur J Biochem. 1973 Jan 3;32(1):173–177. doi: 10.1111/j.1432-1033.1973.tb02594.x. [DOI] [PubMed] [Google Scholar]
- Bull C., Fisher R. G., Hoffman B. M. Manganese hemoglobin: allosteric effects in redox and ligation equilibria. Biochem Biophys Res Commun. 1974 Jul 10;59(1):140–145. doi: 10.1016/s0006-291x(74)80185-3. [DOI] [PubMed] [Google Scholar]
- Bunn H. F., Guidotti G. Stabilizing interactions in hemoglobin. J Biol Chem. 1972 Apr 25;247(8):2345–2350. [PubMed] [Google Scholar]
- Cameron B. F. Spectrophotometry of hemoglobin: a criticism. J Lab Clin Med. 1968 Oct;72(4):680–684. [PubMed] [Google Scholar]
- Dickinson L. C., Chien C. W. Comparative biological chemistry of cobalt hemoglobin. J Biol Chem. 1973 Jul 25;248(14):5005–5011. [PubMed] [Google Scholar]
- Edelstein S. J., Gibson W. H. The effect of functional differences in the alpha and beta chains on the cooperativity of the osidation reduction reaction of hemoglobin. J Biol Chem. 1975 Feb 10;250(3):961–965. [PubMed] [Google Scholar]
- Gibson Q. H., Hoffman B. M., Grepeau R. H., Edelstein S. J., Bull C. Manganese hemoglobin: allosteric effects in stopped flow flash photolysis and sedimentation measurements. Biochem Biophys Res Commun. 1974 Jul 10;59(1):146–151. doi: 10.1016/s0006-291x(74)80186-5. [DOI] [PubMed] [Google Scholar]
- HUISMAN T. H., MEYERING C. A. Studies on the heterogeneity of hemoglobin. I. The heterogeneity of different human hemoglobin types in carboxymethylcellulose and in amberlite IRC-50 chromatography qualitative aspects. Clin Chim Acta. 1960 Jan;5:103–123. doi: 10.1016/0009-8981(60)90098-x. [DOI] [PubMed] [Google Scholar]
- Hensley P., Edelstein S. J., Wharton D. C., Gibson Q. H. Conformation and spin state in methemoglobin. J Biol Chem. 1975 Feb 10;250(3):952–960. [PubMed] [Google Scholar]
- Hoard J. L., Scheidt W. R. Stereochemical trigger for initiating cooperative interaction of the subunits during the oxygenation of cobaltohemoglobin. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3919–3922. doi: 10.1073/pnas.70.12.3919. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoffman B. M., Gibson Q. H., Bull C., Crepeau R. H., Edelstein S. J., Fisher R. G., McDonald M. J. Manganese-substituted hemoglobin and myoglobin. Ann N Y Acad Sci. 1975 Apr 15;244:174–186. doi: 10.1111/j.1749-6632.1975.tb41530.x. [DOI] [PubMed] [Google Scholar]
- Hoffman B. M., Petering D. H. Coboglobins: oxygen-carrying cobalt-reconstituted hemoglobin and myoglobin. Proc Natl Acad Sci U S A. 1970 Oct;67(2):637–643. doi: 10.1073/pnas.67.2.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoffman B. M., Spilburg C. A., Petering D. H. Coboglobins: cobalt substitution and the nature of the prosthetic group--apoprotein interaction in hemoglobin and myoglobin. Cold Spring Harb Symp Quant Biol. 1972;36:343–348. doi: 10.1101/sqb.1972.036.01.045. [DOI] [PubMed] [Google Scholar]
- Hoffman B. M. Triplet state electron paramagnetic resonance studies of zinc porphyrins and zinc-substituted hemoglobins and myoglobins. J Am Chem Soc. 1975 Apr 2;97(7):1688–1694. doi: 10.1021/ja00840a011. [DOI] [PubMed] [Google Scholar]
- Hopfield J. J., Shulman R. G., Ogawa S. An allosteric model of hemoglobin. I. Kinetics. J Mol Biol. 1971 Oct 28;61(2):425–443. doi: 10.1016/0022-2836(71)90391-3. [DOI] [PubMed] [Google Scholar]
- Hsu G. C., Spilburg C. A., Bull C., Hoffman B. M. Coboglobins: heterotropic linkage and the existence of a quaternary structure change upon oxygenation of cobaltohemoglobin. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2122–2124. doi: 10.1073/pnas.69.8.2122. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iizuka T., Kotani M. Analysis of thermal equilibrium between high-spin and low-spin states in ferrihemoglobin complexes. Biochim Biophys Acta. 1969 Dec 23;194(2):351–363. doi: 10.1016/0005-2795(69)90096-8. [DOI] [PubMed] [Google Scholar]
- Kilmartin J. V. The interaction of inositol hexaphosphate with methaemoglobin. Biochem J. 1973 Aug;133(4):725–733. doi: 10.1042/bj1330725. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Little R. G., Hoffman B. M., Ibers J. A. The coordination of sterically hindered bases to metalloporphyrins. Bioinorg Chem. 1974 Apr;3(3):207–215. doi: 10.1016/s0006-3061(00)80070-8. [DOI] [PubMed] [Google Scholar]
- Little R. G., Ibers J. A. Stereochemistry of cobalt porphyrins. 3. The structure of 2,3,7,8,12,13,17,18-octaethylporphinato(1-methylimidazole)-cobalt(II). A model for deoxycoboglobin. J Am Chem Soc. 1974 Jul 10;96(14):4452–4463. doi: 10.1021/ja00821a018. [DOI] [PubMed] [Google Scholar]
- MONOD J., WYMAN J., CHANGEUX J. P. ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. J Mol Biol. 1965 May;12:88–118. doi: 10.1016/s0022-2836(65)80285-6. [DOI] [PubMed] [Google Scholar]
- Perutz M. F., Fersht A. R., Simon S. R., Roberts G. C. Influence of globin structure on the state of the heme. II. Allosteric transitions in methemoglobin. Biochemistry. 1974 May 7;13(10):2174–2186. doi: 10.1021/bi00707a027. [DOI] [PubMed] [Google Scholar]
- Perutz M. F., Heidner E. J., Ladner J. E., Beetlestone J. G., Ho C., Slade E. F. Influence of globin structure on the state of the heme. 3. Changes in heme spectra accompanying allosteric transitions in methemoglobin and their implications for heme-heme interaction. Biochemistry. 1974 May 7;13(10):2187–2200. doi: 10.1021/bi00707a028. [DOI] [PubMed] [Google Scholar]
- Perutz M. F., Ladner J. E., Simon S. R., Ho C. Influence of globin structure on the state of the heme. I. Human deoxyhemoglobin. Biochemistry. 1974 May 7;13(10):2163–2173. doi: 10.1021/bi00707a026. [DOI] [PubMed] [Google Scholar]
- Perutz M. F. Stereochemistry of cooperative effects in haemoglobin. Nature. 1970 Nov 21;228(5273):726–739. doi: 10.1038/228726a0. [DOI] [PubMed] [Google Scholar]
- Perutz M. F., TenEyck L. F. Stereochemistry of cooperative effects in hemoglobin. Cold Spring Harb Symp Quant Biol. 1972;36:295–310. doi: 10.1101/sqb.1972.036.01.040. [DOI] [PubMed] [Google Scholar]
- ROSSI-FANELLI A., ANTONINI E., CAPUTO A. Studies on the relations between molecular and functional properties of hemoglobin. I. The effect of salts on the molecular weight of human hemoglobin. J Biol Chem. 1961 Feb;236:391–396. [PubMed] [Google Scholar]
- Rubin M. M., Changeux J. P. On the nature of allosteric transitions: implications of non-exclusive ligand binding. J Mol Biol. 1966 Nov 14;21(2):265–274. doi: 10.1016/0022-2836(66)90097-0. [DOI] [PubMed] [Google Scholar]
- SCHEJTER A., ADLER A. D., GLAUSER S. C. STOICHIOMETRY OF HEMOGLOBIN REACTIONS. Science. 1963 Aug 30;141(3583):784–788. doi: 10.1126/science.141.3583.784. [DOI] [PubMed] [Google Scholar]
- Szabo A., Karplus M. Analysis of cooperativity in hemoglobin. Valency hybrids, oxidation, and methemoglobin replacement reactions. Biochemistry. 1975 Mar 11;14(5):931–940. doi: 10.1021/bi00676a009. [DOI] [PubMed] [Google Scholar]
- Thomas J. O., Edelstein S. J. Observation of the dissociation of unliganded hemoglobin. J Biol Chem. 1972 Dec 25;247(24):7870–7874. [PubMed] [Google Scholar]
- Tyuma I., Imai K., Shimizu K. Analysis of oxygen equilibrium of hemoglobin and control mechanism of organic phosphates. Biochemistry. 1973 Apr 10;12(8):1491–1498. doi: 10.1021/bi00732a004. [DOI] [PubMed] [Google Scholar]
- WILLIAMS R. J. Nature and properties of metal ions of biological interest and their coordination compounds. Fed Proc. 1961 Sep;2:5–14. [PubMed] [Google Scholar]
- Woodruff W. H., Adams D. H., Spiro T. G., Yonetani T. Resonance Raman spectra of cobalt myoglobins and cobalt porphyrins. Evaluation of protein effects on porphyrin structure. J Am Chem Soc. 1975 Apr 2;97(7):1695–1698. doi: 10.1021/ja00840a012. [DOI] [PubMed] [Google Scholar]
- Woodruff W. H., Spiro T. G., Yonetani T. Resonance Raman spectra of cobalt-substituted hemoglobin: cooperativity and displacement of the cobalt atom upon oxygenation. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1065–1069. doi: 10.1073/pnas.71.4.1065. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yonetani T., Yamamoto H., Woodrow G. V., 3rd Studies on cobalt myoglobins and hemoglobins. I. Preparation and optical properties of myoglobins and hemoglobins containing cobalt proto-, meso-, and deuteroporphyrins and thermodynamic characterization of their reversible oxygenation. J Biol Chem. 1974 Feb 10;249(3):682–690. [PubMed] [Google Scholar]