Abstract
The Fourier transform 13C nuclear magnetic resonance spectra of bovine nasal cartilage proteoglycan subunit and complex and whole bovine nasal cartilage were obtained and compared with that of chondroitin 4-sulfate. The spectrum of chondroitin 4-sulfate in solution revealed multiple resolvable resonances with linewidths that are consistent with considerable segmental motion in the polysaccharide chain. The spectra of proteoglycan subunit and complex in solution and that of whole cartilage were very similar to that of free chondroitin 4-sulfate chains. This indicates that the linkage of multiple chondroitin sulfate chains to proteoglycan core protein and the association of proteoglycan with collagen and other constituents of cartilage matrix does not significantly alter the structure and motions of these chains.
Full text
PDF


Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Atkins E. D., Hardingham T. E., Isaac D. H., Muir H. X-ray fibre diffraction of cartilage proteoglycan aggregates containing hyaluronic acid. Biochem J. 1974 Sep;141(3):919–921. doi: 10.1042/bj1410919. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hardingham T. E., Muir H. Hyaluronic acid in cartilage and proteoglycan aggregation. Biochem J. 1974 Jun;139(3):565–581. doi: 10.1042/bj1390565. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hascall V. C., Heinegård D. Aggregation of cartilage proteoglycans. I. The role of hyaluronic acid. J Biol Chem. 1974 Jul 10;249(13):4232–4241. [PubMed] [Google Scholar]
- Hascall V. C., Sajdera S. W. Physical properties and polydispersity of proteoglycan from bovine nasal cartilage. J Biol Chem. 1970 Oct 10;245(19):4920–4930. [PubMed] [Google Scholar]
- Hascall V. C., Sajdera S. W. Proteinpolysaccharide complex from bovine nasal cartilage. The function of glycoprotein in the formation of aggregates. J Biol Chem. 1969 May 10;244(9):2384–2396. [PubMed] [Google Scholar]
- Honda S., Yuki H., Takiura K. Use of Fourier transform 13C nuclear magnetic resonance spectroscopy for sulfate placement in chondroitin sulfates. J Biochem. 1974 Jul;76(1):209–211. doi: 10.1093/oxfordjournals.jbchem.a130548. [DOI] [PubMed] [Google Scholar]
- Keiser H., DeVito J. Immunochemical studies of fragments of bovine nasal cartilage proteoglycan subunit. Connect Tissue Res. 1974;2(4):273–282. doi: 10.3109/03008207409152256. [DOI] [PubMed] [Google Scholar]
- Keiser H., Shulman H. J., Sandson J. I. Immunochemistry of cartilage proteoglycan. Immunodiffusion and gel-electrophoretic studies. Biochem J. 1972 Jan;126(1):163–169. doi: 10.1042/bj1260163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lasker S. E., Chiu M. L. PMR and 13C studies of some sulfated polysaccharides. Ann N Y Acad Sci. 1973 Dec 31;222:971–977. doi: 10.1111/j.1749-6632.1973.tb15318.x. [DOI] [PubMed] [Google Scholar]
- MALAWISTA I., SCHUBERT M. Chondromucoprotein: new extraction method and alkaline degradation. J Biol Chem. 1958 Jan;230(1):535–544. [PubMed] [Google Scholar]
- Sajdera S. W., Hascall V. C. Proteinpolysaccharide complex from bovine nasal cartilage. A comparison of low and high shear extraction procedures. J Biol Chem. 1969 Jan 10;244(1):77–87. [PubMed] [Google Scholar]
- Suzuki S., Saito H., Yamagata T., Anno K., Seno N., Kawai Y., Furuhashi T. Formation of three types of disulfated disaccharides from chondroitin sulfates by chondroitinase digestion. J Biol Chem. 1968 Apr 10;243(7):1543–1550. [PubMed] [Google Scholar]
