Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1975 Sep;72(9):3491–3495. doi: 10.1073/pnas.72.9.3491

Primary acceptor in bacterial photosynthesis: obligatory role of ubiquinone in photoactive reaction centers of Rhodopseudomonas spheroides.

M Y Okamura, R A Isaacson, G Feher
PMCID: PMC433020  PMID: 1081231

Abstract

Reaction centers were found to bind two ubiquinones, both of which could be removed by o-phenanthroline and the detergent lauryldimethylamine oxide. One ubiquinone was more easily removed than the other. The low-temperature light-induced optical and electron paramagnetic resonance (EPR) changes were eliminated and restored upon removal and readdition of ubiquinone and were quantitatively correlated with the amount of tightly bound ubiquinone. We, therefore, conclude that this ubiquinone plays an obligatory role in the primary photochemistry. The easily removed ubiquinone is thought to be the secondary electron acceptor. The low-temperature charge recombination kinetics, as well as the optical and EPR spectra, were the same for untreated reaction centers and for those reconstituted with ubiquinone. This indicates that extraction and reconstitution were accomplished without altering the conformation of the active site. Reaction centers reconstituted with other quinones also showed restored photochemical activity, although they exhibited changes in their low-temperature recombination kinetics and light-induced (g = 1.8) EPR signal is interpreted in terms of a magnetically coupled ubiquinone--Fe2+ acceptor complex. A possible role of iron is to facilitate electron transfer between the primary and secondary ubiquinones.

Full text

PDF
3491

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bensasson R., Land E. J. Optical and kinetic properties of semireduced plastoquinone and ubiquinone: electron acceptors in photosynthesis. Biochim Biophys Acta. 1973 Oct 19;325(1):175–181. doi: 10.1016/0005-2728(73)90163-1. [DOI] [PubMed] [Google Scholar]
  2. Clayton R. K., Straley S. C. Photochemical electron transport in photosynthetic reaction centers. IV. Observations related to the reduced photoproducts. Biophys J. 1972 Oct;12(10):1221–1234. doi: 10.1016/S0006-3495(72)86158-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cogdell R. J., Brune D. C., Clayton R. K. Effects of extraction and replacement of ubiquinone upon the photochemical activity of reaction centers and chromatophores from Rhodopseudomonas spheriodes. FEBS Lett. 1974 Sep 1;45(1):344–347. doi: 10.1016/0014-5793(74)80877-x. [DOI] [PubMed] [Google Scholar]
  4. Dutton P. L., Leigh J. S., Jr, Reed D. W. Primary events in the photosynthetic reaction centre from Rhodopseudomonas spheroides strain R26: triplet and oxidized states of bacteriochlorophyll and the identification of the primary electron acceptor. Biochim Biophys Acta. 1973 Apr 5;292(3):654–664. doi: 10.1016/0005-2728(73)90013-3. [DOI] [PubMed] [Google Scholar]
  5. Dutton P. L., Leight J. S., Seibert M. Primary processes in photosynthesis: in situ ESR studies on the light induced oxidized and triplet state of reaction center bacteriochlorophyll. Biochem Biophys Res Commun. 1972 Jan 31;46(2):406–413. doi: 10.1016/s0006-291x(72)80153-0. [DOI] [PubMed] [Google Scholar]
  6. Feher G., Hoff A. J., Isaacson R. A., Ackerson L. C. ENDOR experiments on chlorophyll and bacteriochlorophyll in vitro and in the photosynthetic unit. Ann N Y Acad Sci. 1975 Apr 15;244:239–259. doi: 10.1111/j.1749-6632.1975.tb41534.x. [DOI] [PubMed] [Google Scholar]
  7. Feher G., Isaacson R. A., McElroy J. D., Ackerson L. C., Okamura M. Y. On the question of the primary acceptor in bacterial photosynthesis:manganese substituting for iron in reaction centers of Rhodopseudomonas spheroides R-26. Biochim Biophys Acta. 1974 Oct 18;368(1):135–139. doi: 10.1016/0005-2728(74)90104-2. [DOI] [PubMed] [Google Scholar]
  8. Feher G., Okamura M. Y., McElroy J. D. Identification of an electron acceptor in reaction centers of Rhodopseudomonas spheroides by EPR spectroscopy. Biochim Biophys Acta. 1972 Apr 20;267(1):222–226. doi: 10.1016/0005-2728(72)90155-7. [DOI] [PubMed] [Google Scholar]
  9. Feher G. Some chemical and physical properties of a bacterial reaction center particle and its primary photochemical reactants. Photochem Photobiol. 1971 Sep;14(3):373–387. doi: 10.1111/j.1751-1097.1971.tb06180.x. [DOI] [PubMed] [Google Scholar]
  10. Halsey Y. D., Parson W. W. Identification of ubiquinone as the secondary electron acceptor in the photosynthetic apparatus of Chromatium vinosum. Biochim Biophys Acta. 1974 Jun 28;347(3):404–416. doi: 10.1016/0005-2728(74)90079-6. [DOI] [PubMed] [Google Scholar]
  11. Hopfield J. J. Electron transfer between biological molecules by thermally activated tunneling. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3640–3644. doi: 10.1073/pnas.71.9.3640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ke B., Garcia A. F., Vernon L. P. Light-induced absorption changes in Chromatium subchromatophore particles exhaustively extracted with non-polar solvents. Biochim Biophys Acta. 1973 Jan 18;292(1):226–236. doi: 10.1016/0005-2728(73)90267-3. [DOI] [PubMed] [Google Scholar]
  13. Loach P. A., Hall R. L. The question of the primary electron acceptor in bacterial photosynthesis. Proc Natl Acad Sci U S A. 1972 Apr;69(4):786–790. doi: 10.1073/pnas.69.4.786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Norris J. R., Druyan M. E., Katz J. J. Electron nuclear double resonance of bacteriochlorophyll free radical in vitro and in vivo. J Am Chem Soc. 1973 Mar 7;95(5):1680–1682. doi: 10.1021/ja00786a066. [DOI] [PubMed] [Google Scholar]
  15. Norris J. R., Scheer H., Katz J. J. Models for antenna and reaction center chlorophylls. Ann N Y Acad Sci. 1975 Apr 15;244:260–280. doi: 10.1111/j.1749-6632.1975.tb41535.x. [DOI] [PubMed] [Google Scholar]
  16. Norris J. R., Uphaus R. A., Crespi H. L., Katz J. J. Electron spin resonance of chlorophyll and the origin of signal I in photosynthesis. Proc Natl Acad Sci U S A. 1971 Mar;68(3):625–628. doi: 10.1073/pnas.68.3.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Noël H., Van der Rest M., Gingras G. Isolation and partial characterization of P870 reaction center complex from wild type Rhodospirillum rubrum. Biochim Biophys Acta. 1972 Aug 17;275(2):219–230. doi: 10.1016/0005-2728(72)90043-6. [DOI] [PubMed] [Google Scholar]
  18. Okamura M. Y., Steiner L. A., Feher G. Characterization of reaction centers from photosynthetic bacteria. I. Subunit structure of the protein mediating the primary photochemistry in Rhodopseudomonas spheroides R-26. Biochemistry. 1974 Mar 26;13(7):1394–1403. doi: 10.1021/bi00704a013. [DOI] [PubMed] [Google Scholar]
  19. PUMPHREY A. M., REDFEARN E. R. A method for determining the concentration of ubiquinone in mitochondrial preparations. Biochem J. 1960 Jul;76:61–64. doi: 10.1042/bj0760061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Parson W. W., Case G. D. In Chromatium, a single photochemical reaction center oxidizes both cytochrome C552 and cytochrome C555. Biochim Biophys Acta. 1970;205(2):232–245. doi: 10.1016/0005-2728(70)90253-7. [DOI] [PubMed] [Google Scholar]
  21. Parson W. W., Cogdell R. J. The primary photochemical reaction to bacterial photosynthesis. Biochim Biophys Acta. 1975 Mar 31;416(1):105–149. doi: 10.1016/0304-4173(75)90014-2. [DOI] [PubMed] [Google Scholar]
  22. Slooten L. Electron acceptors in reaction center preparations from photosynthetic bacteria. Biochim Biophys Acta. 1972 Aug 17;275(2):208–218. doi: 10.1016/0005-2728(72)90042-4. [DOI] [PubMed] [Google Scholar]
  23. Straley S. C., Parson W. W., Mauzerall D. C., Clayton R. K. Pigment content and molar extinction coefficients of photochemical reaction centers from Rhodopseudomonas spheroides. Biochim Biophys Acta. 1973 Jun 28;305(3):597–609. doi: 10.1016/0005-2728(73)90079-0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES