Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1975 Sep;72(9):3505–3507. doi: 10.1073/pnas.72.9.3505

The glass point of elastin.

S R Kakivaya, C A Hoeve
PMCID: PMC433023  PMID: 1059138

Abstract

Elastin undergoes a glass transition in a temperature range depends on its water content. This behavior is similar to that of amorphous polymers swollen with solvent and, therefore, is additional evidence for the random network model proposed for the structure of elastin.

Full text

PDF
3505

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Gray W. R., Sandberg L. B., Foster J. A. Molecular model for elastin structure and function. Nature. 1973 Dec 21;246(5434):461–466. doi: 10.1038/246461a0. [DOI] [PubMed] [Google Scholar]
  2. Hoeve C. A., Flory P. J. The elastic properties of elastin. Biopolymers. 1974 Apr;13(4):677–686. doi: 10.1002/bip.1974.360130404. [DOI] [PubMed] [Google Scholar]
  3. Kramsch D. M., Hollander W. The interaction of serum and arterial lipoproteins with elastin of the arterial intima and its role in the lipid accumulation in atherosclerotic plaques. J Clin Invest. 1973 Feb;52(2):236–247. doi: 10.1172/JCI107180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Weis-Fogh T., Anderson S. O. New molecular model for the long-range elasticity of elastin. Nature. 1970 Aug 15;227(5259):718–721. doi: 10.1038/227718a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES