Abstract
The molecular weight of the adrenocorticotropic hormone (ACTH) activity in extracts of the separated anterior and intermediate-posterior lobes of the mouse pituitary was determined by gel filtration in guanidine-HCl. Following dilution or removal of the guanidine-HCl, ACTH activity was quantitated by both radioimmunoassay and bioassay. Extracts of the intermediate-posterior lobe contain approximately a tenth as much ACTH activity as extracts of the anterior lobe. In extracts of both the anterior and the intermediate-posterior lobes, about half of the immunological ACTH activity is similar in size to porcine ACTH (molecular weight 4000--5500). Two higher molecular weight forms of ACTH account for the remainder of the ACTH activity. About 40% of the immunological ACTH activity in anterior lobe extracts has a molecular weight of 6500--9000. Extracts of both the anterior lobe and the intermediate-posterior lobe contain ACTH activity with a molecular weight of 20,000--30,000. While this 20,000--30,000 molecular weight ACTH accounts for only 5% of the immunological ACTH activity in the anterior lobe extracts, it accounts for half of the immunological ACTH activity in extracts of the intermediate-posterior lobe. Extracts of an ACTH-secreting mouse pituitary tumor cell line (AtT-20/D-16v) contain the same three molecular weight forms of ACTH. Each of the three molecular weight forms of ACTH has a characteristic ratio of biological ACTH activity to immunological ACTH activity, independent of the source of the material (anterior lobe, intermediate-posterior lobe, or mouse pituitary tumor cell line).
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baker B. L., Drummond T. The cellular origins of corticotropin and melanotropin as revealed by immunochemical staining. Am J Anat. 1972 Aug;134(4):395–409. doi: 10.1002/aja.1001340402. [DOI] [PubMed] [Google Scholar]
- Coslovsky R., Yalow R. S. Influence of the hormonal forms of ACTH on the pattern of corticosteroid secretion. Biochem Biophys Res Commun. 1974 Oct 23;60(4):1351–1356. doi: 10.1016/0006-291x(74)90346-5. [DOI] [PubMed] [Google Scholar]
- FISHER J. D., DE SALVA S. J. Plasma corticosterone and adrenal ascorbic acid levels in adeno- and neurohypophysectomized rats given epinephrine postoperatively. Am J Physiol. 1959 Dec;197:1263–1264. doi: 10.1152/ajplegacy.1959.197.6.1263. [DOI] [PubMed] [Google Scholar]
- Fish W. W., Mann K. G., Tanford C. The estimation of polypeptide chain molecular weights by gel filtration in 6 M guanidine hydrochloride. J Biol Chem. 1969 Sep 25;244(18):4989–4994. [PubMed] [Google Scholar]
- ITOH S., NISHIMURA Y., YAMAMOTO M., TAKAHASHI H. ADRENOCORTICAL RESPONSE TO EPINEPHRINE IN NEUROHYPOPHYSECTOMIZED RATS. Jpn J Physiol. 1964 Apr 15;14:177–187. doi: 10.2170/jjphysiol.14.177. [DOI] [PubMed] [Google Scholar]
- JACOBOWITZ D., MARKS B. H., VERNIKOS-DANELLIS J. Effect of acute stress on the pituitrary gland: uptake of serine-1-C14 into ACTH. Endocrinology. 1963 Apr;72:592–597. doi: 10.1210/endo-72-4-592. [DOI] [PubMed] [Google Scholar]
- Kraicer J., Gosbee J. L., Bencosme S. A. Pars intermedia and pars distalis: two sites of ACTH production in the rat hypophysis. Neuroendocrinology. 1973;11(3):156–176. doi: 10.1159/000122129. [DOI] [PubMed] [Google Scholar]
- LI C. H. Proposed system of terminology for preparations of adrenocorticotropic hormone. Science. 1959 Apr 10;129(3354):969–970. doi: 10.1126/science.129.3354.969-a. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lang R. E., Fehm H. L., Voigt K. H., Pfeiffer E. F. Two ACTH species in rat pituitary gland. FEBS Lett. 1973 Dec 1;37(2):197–199. doi: 10.1016/0014-5793(73)80457-0. [DOI] [PubMed] [Google Scholar]
- Lowry P. J., Bennett H. P., McMartin C. The isolation and amino acid sequence of an adrenocorticotrophin from the pars distalis and a corticotrophin-like intermediate-lobe peptide from the neurointermediate lobe of the pituitary of the dogfish Squalus acanthias. Biochem J. 1974 Aug;141(2):427–437. doi: 10.1042/bj1410427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MIALHE-VOLOSS C. Posthypophyse et activite corticotrope. Acta Endocrinol Suppl (Copenh) 1958;28(Suppl 35):1–96. [PubMed] [Google Scholar]
- McIlhinney J., Schulster D. The preparation of biologically active 125I-labeled adrenocorticotrophic hormone by a simple enzymic radioiodination procedure utilizing lactoperoxidase. Endocrinology. 1974 May;94(5):1259–1264. doi: 10.1210/endo-94-5-1259. [DOI] [PubMed] [Google Scholar]
- Miller R. E., Yueh-Chien H., Wiley M. K., Hewitt R. Anterior hypophysial function in the posterior-hypophysectomized rat: normal regulation of the adrenal system. Neuroendocrinology. 1974;14(3):233–250. doi: 10.1159/000122262. [DOI] [PubMed] [Google Scholar]
- Moriarty G. C. Adenohypophysis: ultrastructural cytochemistry. A review. J Histochem Cytochem. 1973 Oct;21(10):855–894. doi: 10.1177/21.10.855. [DOI] [PubMed] [Google Scholar]
- Naik D. V. Electron microscopic-immunocytochemical localization of adrenocorticotropin and melanocyte stimulating hormone in the pars intermedia cells of rats and mice. Z Zellforsch Mikrosk Anat. 1973 Sep 17;142(3):305–328. doi: 10.1007/BF00307355. [DOI] [PubMed] [Google Scholar]
- Naik D. V. Immunohistochemical localization of adrenocorticotropin and melanocyte stimulating hormone in pars intermedia of rat hypophysis. Z Zellforsch Mikrosk Anat. 1973 Sep 17;142(3):289–304. doi: 10.1007/BF00307354. [DOI] [PubMed] [Google Scholar]
- Nakane P. K. Classifications of anterior pituitary cell types with immunoenzyme histochemistry. J Histochem Cytochem. 1970 Jan;18(1):9–20. doi: 10.1177/18.1.9. [DOI] [PubMed] [Google Scholar]
- Orth D. N., Nicholson W. E., Mitchell W. M., Island D. P., Shapiro M., Byyny R. L. ACTH and MSH production by a single cloned mouse pituitary tumor cell line. Endocrinology. 1973 Feb;92(2):385–393. doi: 10.1210/endo-92-2-385. [DOI] [PubMed] [Google Scholar]
- PETERSON R. E. The identification of corticosterone in human plasma and its assay by isotope dilution. J Biol Chem. 1957 Mar;225(1):25–37. [PubMed] [Google Scholar]
- Phifer R. F., Spicer S. S. Immunohistologic and immunopathologic demonstration of adrenocorticotropic hormone in the pars intermedia of the adenohypophysis. Lab Invest. 1970 Nov;23(5):543–550. [PubMed] [Google Scholar]
- ROCHEFORT G. J., ROSENBERGER J., SAFFRAN M. Depletion of pituitary corticotrophin by various stresses and by neurohypophysial preparations. J Physiol. 1959 Apr 23;146(1):105–116. doi: 10.1113/jphysiol.1959.sp006181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROOS P., FEVOLD H. R., GEMZELL C. A. PREPARATION OF HUMAN GROWTH HORMONE BY GEL FILTRATION. Biochim Biophys Acta. 1963 Aug 13;74:525–531. doi: 10.1016/0006-3002(63)91395-7. [DOI] [PubMed] [Google Scholar]
- Redshaw M. R., Lynch S. S. An improved method for the preparation of iodinated antigens for radioimmunoassay. J Endocrinol. 1974 Mar;60(3):527–528. doi: 10.1677/joe.0.0600527. [DOI] [PubMed] [Google Scholar]
- Rees L. H., Cook D. M., Kendall J. W., Allen C. F., Kramer R. M., Ratcliffe J. G., Knight R. A. A radioimmunoassay for rat plasma ACTH. Endocrinology. 1971 Jul;89(1):254–261. doi: 10.1210/endo-89-1-254. [DOI] [PubMed] [Google Scholar]
- SMELIK P. G., GAARENSTROOM J. H., KONIJNENDIJK W., de WIED Evaluation of the role of the posterior lobe of the hypophysis in the reflex secretion of corticotrophin. Acta Physiol Pharmacol Neerl. 1962;11:20–33. [PubMed] [Google Scholar]
- SMELIK P. G. Mechanism of hypophysial response to psychic stress. Acta Endocrinol (Copenh) 1960 Mar;33:437–443. doi: 10.1530/acta.0.xxxiii0437. [DOI] [PubMed] [Google Scholar]
- Sayers G., Swallow R. L., Giordano N. D. An improved technique for the preparation of isolated rat adrenal cells: a sensitive, accurate and specfic method for the assay of ACTH. Endocrinology. 1971 Apr;88(4):1063–1068. doi: 10.1210/endo-88-4-1063. [DOI] [PubMed] [Google Scholar]
- Scott A. P., Lowry P. J., Bennett H. P., McMartin C., Ratcliffe J. G. Purification and characterization of porcine corticotrophin-like intermediate lobe peptide. J Endocrinol. 1974 Jun;61(3):369–380. doi: 10.1677/joe.0.0610369. [DOI] [PubMed] [Google Scholar]
- Scott A. P., Lowry P. J., Ratcliffe J. G., Rees L. H., Landon J. Corticotrophin-like peptides in the rat pituitary. J Endocrinol. 1974 Jun;61(3):355–367. doi: 10.1677/joe.0.0610355. [DOI] [PubMed] [Google Scholar]
- Scott A. P., Ratcliffe J. G., Rees L. H., Landon J., Bennett H. P., Lowry P. J., McMartin C. Pituitary peptide. Nat New Biol. 1973 Jul 18;244(133):65–67. doi: 10.1038/newbio244065a0. [DOI] [PubMed] [Google Scholar]
- Shapiro M., Nicholson W. E., Orth D. N., Mitchell W. M., Island D. P., Liddle G. W. Preliminary characterization of the pituitary melanocyte stimulating hormones of several vertebrate species. Endocrinology. 1972 Jan;90(1):249–256. doi: 10.1210/endo-90-1-249. [DOI] [PubMed] [Google Scholar]
- Stoeckel M. E., Dellmann H. D., Porte A., Gertner C. The rostral zone of the intermediate lobe of the mouse hypophysis, a zone of particular concentration of corticotrophic cells. A light and electron microscopic study. Z Zellforsch Mikrosk Anat. 1971;122(3):310–322. doi: 10.1007/BF00935992. [DOI] [PubMed] [Google Scholar]
- Stoeckel M. E., Doerr-Schott J., Porte A., Dellmann H. D., Dubois M. P. Immunohistochemical demonstration of corticotrophic cells concentrated in the rostral zone of the pars intermedia of the mouse hypophysis. Experientia. 1973 Oct 15;29(10):1289–1290. doi: 10.1007/BF01935122. [DOI] [PubMed] [Google Scholar]
- Svalander C. Ultrastructure of the fetal rat adenohypophysis. Acta Endocrinol Suppl (Copenh) 1974;188:1–113. [PubMed] [Google Scholar]
- Yamamoto K., Taylor L. M., Cole F. E. Synthesis and release of GH and prolactin from the rat anterior pituitary in vitro as functions of age and sex. Endocrinology. 1970 Jul;87(1):20–26. doi: 10.1210/endo-87-1-20. [DOI] [PubMed] [Google Scholar]
- Yasumura Y., Buonassisi V., Sato G. Clonal analysis of differentiated function in animal cell cultures. I. Possible correlated maintenance of differentiated function and the diploid karyotype. Cancer Res. 1966 Mar;26(3):529–535. [PubMed] [Google Scholar]
