Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1975 Sep;72(9):3642–3646. doi: 10.1073/pnas.72.9.3642

Mutants of T7 bacteriophage inhibited by lambda prophage.

C C Pao, J F Speyer
PMCID: PMC433052  PMID: 1059155

Abstract

Mutants in gene 20, a new T7 gene, cannot grow on rex+ lambda lysogens. Gene 20-- mutants suppress in double mutants the phenotype of T7 ligase negative mutations, but not vice versa. Amber 20- mutants have been obtained. There are differences between these T7 mutations and the similar T4 rII mutations. There are host mutations which permit T7 20- mutants to grow on lambda+ lysogens. T7 DNA synthesis on normal lambda+ lysogens infected with 20- mutants is essentially normal, but the DNA is not packaged. The gene 20 protein is active in in vitro complementation and probably used late in infection for DNA packaging into phage heads.

Full text

PDF
3642

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benzer S. FINE STRUCTURE OF A GENETIC REGION IN BACTERIOPHAGE. Proc Natl Acad Sci U S A. 1955 Jun 15;41(6):344–354. doi: 10.1073/pnas.41.6.344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berger H., Kozinski A. W. Suppression of T4D ligase mutations by rIIa and rIIb mutations. Proc Natl Acad Sci U S A. 1969 Nov;64(3):897–904. doi: 10.1073/pnas.64.3.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CHAMPE S. P., BENZER S. Reversal of mutant phenotypes by 5-fluorouracil: an approach to nucleotide sequences in messenger-RNA. Proc Natl Acad Sci U S A. 1962 Apr 15;48:532–546. doi: 10.1073/pnas.48.4.532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Center M. S. Bacteriophage T7-induced endonuclease II. Purification and properties of the enzyme. J Biol Chem. 1972 Jan 10;247(1):146–156. [PubMed] [Google Scholar]
  5. Dove W. F. Strains of phage lambda in current use. Virology. 1969 Jun;38(2):349–351. doi: 10.1016/0042-6822(69)90378-x. [DOI] [PubMed] [Google Scholar]
  6. Dove W. The extent of rII deletions in phage T4. Genet Res. 1968 Apr;11(2):215–219. doi: 10.1017/s001667230001140x. [DOI] [PubMed] [Google Scholar]
  7. Ebisuzaki K., Campbell L. On the role of ligase in genetic recombination in bacteriophage T4. Virology. 1969 Aug;38(4):701–703. doi: 10.1016/0042-6822(69)90190-1. [DOI] [PubMed] [Google Scholar]
  8. GAREN A. Physiological effects of rII mutations in bacteriophage T4. Virology. 1961 Jun;14:151–163. doi: 10.1016/0042-6822(61)90190-8. [DOI] [PubMed] [Google Scholar]
  9. Gottesman M. M., Hicks M. L., Gellert M. Genetics and function of DNA ligase in Escherichia coli. J Mol Biol. 1973 Jul 15;77(4):531–547. doi: 10.1016/0022-2836(73)90221-0. [DOI] [PubMed] [Google Scholar]
  10. Howard B. D. Phage lambda mutants deficient in r-II exclusion. Science. 1967 Dec 22;158(3808):1588–1589. doi: 10.1126/science.158.3808.1588. [DOI] [PubMed] [Google Scholar]
  11. Jacquemin-Sablon A., Lanni Y. T. Lambda-repressed mutants of bacteriophage T5. I. Isolation and genetical characterization. Virology. 1973 Nov;56(1):230–237. doi: 10.1016/0042-6822(73)90302-4. [DOI] [PubMed] [Google Scholar]
  12. Karam J. D. DNA replication of phage T4 rII mutants without polynucleotide ligase (gene 30). Biochem Biophys Res Commun. 1969 Oct 22;37(3):416–422. doi: 10.1016/0006-291x(69)90931-0. [DOI] [PubMed] [Google Scholar]
  13. Kelly T. J., Jr, Thomas C. A., Jr An intermediate in the replication of bacteriophage T7 DNA molecules. J Mol Biol. 1969 Sep 28;44(3):459–475. doi: 10.1016/0022-2836(69)90373-8. [DOI] [PubMed] [Google Scholar]
  14. Kerr C., Sadowski P. D. Packaging and maturation of DNA of bacteriophage T7 in vitro. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3545–3549. doi: 10.1073/pnas.71.9.3545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Masamune Y., Frenkel G. D., Richardson C. C. A mutant of bacteriophage T7 deficient in polynucleotide ligase. J Biol Chem. 1971 Nov 25;246(22):6874–6879. [PubMed] [Google Scholar]
  16. Morrison T. G., Malamy M. H. T7 translational control mechanisms and their inhibiton by F factors. Nat New Biol. 1971 May 12;231(19):37–41. doi: 10.1038/newbio231037a0. [DOI] [PubMed] [Google Scholar]
  17. Moyer R. W., Fu A. S., Szabo C. Regulation of bacteriophage T5 development by ColI factors. J Virol. 1972 May;9(5):804–812. doi: 10.1128/jvi.9.5.804-812.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pao C. C., Speyer J. F. Order of injection of T7 bacteriophage DNA. J Virol. 1973 Jun;11(6):1024–1026. doi: 10.1128/jvi.11.6.1024-1026.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sadowski P. D. An endodeoxyribonuclease induced after infection with phage T7 bearing amber mutations in genes 3, 5, and 6. Can J Biochem. 1972 Sep;50(9):1016–1023. doi: 10.1139/o72-140. [DOI] [PubMed] [Google Scholar]
  20. Saxe L. S. Reduction of colicin E2-induced DNA breakdown by the rex gene of lambda prophage. Virology. 1974 Jul;60(1):288–292. doi: 10.1016/0042-6822(74)90387-0. [DOI] [PubMed] [Google Scholar]
  21. Serwer P. Fast sedimenting bacteriophage T7 DNA from T7-infected Escherichia coli. Virology. 1974 May;59(1):70–88. doi: 10.1016/0042-6822(74)90207-4. [DOI] [PubMed] [Google Scholar]
  22. Strobel M., Nomura M. Restriction of the growth of bacteriophage BF23 by a colicine I (Col I-P9) factor. Virology. 1966 Apr;28(4):763–765. doi: 10.1016/0042-6822(66)90263-7. [DOI] [PubMed] [Google Scholar]
  23. Studier F. W. Bacteriophage T7. Science. 1972 Apr 28;176(4033):367–376. doi: 10.1126/science.176.4033.367. [DOI] [PubMed] [Google Scholar]
  24. Studier F. W. Genetic analysis of non-essential bacteriophage T7 genes. J Mol Biol. 1973 Sep 15;79(2):227–236. doi: 10.1016/0022-2836(73)90002-8. [DOI] [PubMed] [Google Scholar]
  25. Studier F. W., Maizel J. V., Jr T7-directed protein synthesis. Virology. 1969 Nov;39(3):575–586. doi: 10.1016/0042-6822(69)90105-6. [DOI] [PubMed] [Google Scholar]
  26. Studier F. W. The genetics and physiology of bacteriophage T7. Virology. 1969 Nov;39(3):562–574. doi: 10.1016/0042-6822(69)90104-4. [DOI] [PubMed] [Google Scholar]
  27. Warner H. R. Partial suppression of bacteriophage T4 ligase mutations by T4 endonuclease II deficiency: role of host ligase. J Virol. 1971 Apr;7(4):534–536. doi: 10.1128/jvi.7.4.534-536.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Weisberg R. A., Gottesman M. E. The integration and excision defect of bacteriophage lambda-dg. J Mol Biol. 1969 Dec 28;46(3):565–580. doi: 10.1016/0022-2836(69)90196-x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES