Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1975 Oct;72(10):3868–3872. doi: 10.1073/pnas.72.10.3868

Restriction endonuclease analysis of mitochondrial DNA from grande and genetically characterized cytoplasmic petite clones of Saccharomyces cerevisiae.

R Morimoto, A Lewin, H J Hsu, M Rabinowitz, H Fukuhara
PMCID: PMC433097  PMID: 1105566

Abstract

Digestion of grande mitochondrial DNA (mtDNA) BY EcoRI restriction endonuclease gives rise to nine fragments with a total molecular weight of 51.8 x 10(6). HindIII digestion yields six fragments with a similar total molecular weight. Specific restriction fragments can be detected despite the fact that yeast mtDNA consists of a heterogeneous distribution of randomly broken molecules. Digestion patterns of 10 genetically characterized petite clones containing various combinations of five antiobiotic resistance markers indicate that the petite mtDNA predominantly represents deletion of the grande genome. The petite mtDNAs contained up to seven EcoRI restriction fragments which comigrate with grande restriction fragments, and at least one fragment that did not correspond to any in the grande. Some strains contained multiple fragments with mobility different from that of grande; these fragments were usually present in less than molar concentrations. The genetic markers were associated with individual sets of restriction fragments. However, several internal inconsistencies prevent the construction of a definitive genetic fragment map. These anomalies, together with the digestion patterns, provide strong evidence that, in addition to single contiguous deletion, other changes such as multiple deletion and heterogeneity of mtDNA populations are present in some of the petite mtDNAs.

Full text

PDF
3868

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Borst P. Mitochondrial nucleic acids. Annu Rev Biochem. 1972;41:333–376. doi: 10.1146/annurev.bi.41.070172.002001. [DOI] [PubMed] [Google Scholar]
  2. Casey J. W., Hsu H. J., Rabinowitz M., Getz G. S., Fukuhara H. Transfer RNA genes in the mitochondrial DNA of cytoplasmic petite mutants of Saccharomyces cerevisiae. J Mol Biol. 1974 Oct 5;88(4):717–733. doi: 10.1016/0022-2836(74)90395-7. [DOI] [PubMed] [Google Scholar]
  3. Casey J., Cohen M., Rabinowitz M., Fukuhara H., Getz G. S. Hybridization of mitochondrial transfer RNA's with mitochondrial and nuclear DNA of grande (wild type) yeast. J Mol Biol. 1972 Feb 14;63(3):431–440. doi: 10.1016/0022-2836(72)90438-x. [DOI] [PubMed] [Google Scholar]
  4. Deutsch J., Dujon B., Netter P., Petrochilo E., Slonimski P. P., Bolotin-Fukuhara M., Coen D. Mitochondrial genetics. VI. The petite mutation in Saccharomyces cerevisiae: interrelations between the loss of the p+ factor and the loss of the drug resistance mitochondrial genetic markers. Genetics. 1974 Feb;76(2):195–219. doi: 10.1093/genetics/76.2.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fauman M. A., Rabinowitz M. DNA-DNA hybridization studies of mitochondrial DNA of ethidium-bromide-induced petite mutants of yeast. Eur J Biochem. 1974 Feb 15;42(1):67–71. doi: 10.1111/j.1432-1033.1974.tb03315.x. [DOI] [PubMed] [Google Scholar]
  6. Faye G., Fukuhara H., Grandchamp C., Lazowska J., Michel F., Casey J., Getz G. S., Locker J., Rabinowitz M., Bolotin-Fukuhara M. Mitochondrial nucleic acids in the petite colonie mutants: deletions and repetition of genes. Biochimie. 1973;55(6):779–792. doi: 10.1016/s0300-9084(73)80030-6. [DOI] [PubMed] [Google Scholar]
  7. Fukuhara H., Faye G., Michel F., Lazowska J., Deutsch J., Bolotin-Fukuhara M., slonimski P. P. Physical and genetic organization of petite and grande yeast mitochondrial DNA.I. Studies by RNA-DNA hybridization. Mol Gen Genet. 1974 May 31;130(3):215–238. doi: 10.1007/BF00268801. [DOI] [PubMed] [Google Scholar]
  8. Gordon P., Casey J., Rabinowitz M. Characterization of mitochondrial deoxyribonucleic acid from a series of petite yeast strains by deoxyribonucleic acid-deoxyribonucleic acid hybridization. Biochemistry. 1974 Mar 12;13(6):1067–1075. doi: 10.1021/bi00703a002. [DOI] [PubMed] [Google Scholar]
  9. Gordon P., Rabinowitz M. Evidence for deletion and changed sequence in the mitochondrial deoxyribonucleic acid of a spontaneously generated petite mutant of Saccharomyces cerevisiae. Biochemistry. 1973 Jan 2;12(1):116–123. doi: 10.1021/bi00725a019. [DOI] [PubMed] [Google Scholar]
  10. Hollenberg C. P., Borst P., van Bruggen E. F. Mitochondrial DNA. V. A 25 micron closed circular duplex DNA molecule in wild-type yeast mitochondria. Stucture and genetic complexity. Biochim Biophys Acta. 1970 May 21;209(1):1–15. [PubMed] [Google Scholar]
  11. Locker J., Rabinowitz M., Getz G. S. Electron microscopic and renaturation kinetic analysis of mitochondrial DNA of cytoplasmic petite mutants of Saccharomyces cerevisiae. J Mol Biol. 1974 Sep 15;88(2):489–507. doi: 10.1016/0022-2836(74)90497-5. [DOI] [PubMed] [Google Scholar]
  12. Locker J., Rabinowitz M., Getz G. S. Tandem inverted repeats in mitochondrial DNA of petite mutants of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1366–1370. doi: 10.1073/pnas.71.4.1366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Smith H. O., Nathans D. Letter: A suggested nomenclature for bacterial host modification and restriction systems and their enzymes. J Mol Biol. 1973 Dec 15;81(3):419–423. doi: 10.1016/0022-2836(73)90152-6. [DOI] [PubMed] [Google Scholar]
  14. Smith H. O., Wilcox K. W. A restriction enzyme from Hemophilus influenzae. I. Purification and general properties. J Mol Biol. 1970 Jul 28;51(2):379–391. doi: 10.1016/0022-2836(70)90149-x. [DOI] [PubMed] [Google Scholar]
  15. Thomas M., Davis R. W. Studies on the cleavage of bacteriophage lambda DNA with EcoRI Restriction endonuclease. J Mol Biol. 1975 Jan 25;91(3):315–328. doi: 10.1016/0022-2836(75)90383-6. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES