Abstract
Previous studies have shown that in mammalian cells proteins of large molecular weight are degraded more rapidly than small ones. Evidence is presented here that half-lives of proteins are also related to their isoelectric points. A double-isotope method was used to compare degradative rates of soluble proteins separated by isoelectric focusing. In rat liver, skeletal muscle, kidney, and brain, more rapid rates of catabolism were found for acidic protein fractions than for neutral or basic ones. Acidic proteins also tended to be degraded faster in several mouse tissues. A literature survey confirmed this trend. For 22 proteins from rat liver, a highly significant correlation was found between rates of degradation and isoelectric points (r = 0.824; P less than 0.01). This relationship between isoelectric point and half-life appears to be distinct from that between protein size and half-life.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alpers D. H. The relation of size to the relative rates of degradation of intestinal brush border proteins. J Clin Invest. 1972 Oct;51(10):2621–2630. doi: 10.1172/JCI107080. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arias I. M., Doyle D., Schimke R. T. Studies on the synthesis and degradation of proteins of the endoplasmic reticulum of rat liver. J Biol Chem. 1969 Jun 25;244(12):3303–3315. [PubMed] [Google Scholar]
- Bagshaw J. C., Drysdale J. W., Malt R. A. Multiple forms of mammalian RNA polymerase displayed by gel electrofocusing. Ann N Y Acad Sci. 1973 Jun 15;209:363–371. doi: 10.1111/j.1749-6632.1973.tb47540.x. [DOI] [PubMed] [Google Scholar]
- Ballard F. J., Hopgood M. F. Phosphopyruvate carboxylase induction by L-tryptophan. Effects on synthesis and degradation of the enzyme. Biochem J. 1973 Oct;136(2):259–264. doi: 10.1042/bj1360259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bond J. S. A comparison of the proteolytic susceptibility of several rat liver enzymes. Biochem Biophys Res Commun. 1971 Apr 16;43(2):333–339. doi: 10.1016/0006-291x(71)90757-1. [DOI] [PubMed] [Google Scholar]
- Campos-Cavieres M., Munn E. A. Purification and some properties of cytoplasmic aspartate aminotransferase from sheep liver. Biochem J. 1973 Dec;135(4):683–693. doi: 10.1042/bj1350683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Criss W. E. A new pyruvate kinase isozyme in hepatomas. Biochem Biophys Res Commun. 1969 Jun 27;35(6):901–905. doi: 10.1016/0006-291x(69)90709-8. [DOI] [PubMed] [Google Scholar]
- DeSimone J., Kleve L., Longley M. A., Shaeffer J. Rapid turnover of newly-synthesized beta S chains in reticulocytes from individuals with sickle cell trait. Biochem Biophys Res Commun. 1974 Mar 15;57(1):248–254. doi: 10.1016/s0006-291x(74)80383-9. [DOI] [PubMed] [Google Scholar]
- Dean R. T. Turnover of lysosomal proteins and induction and distribution of rat liver proteinases, after treatment with Triton WR-1339. Biochem Soc Trans. 1975;3(2):250–252. doi: 10.1042/bst0030250. [DOI] [PubMed] [Google Scholar]
- Dehlinger P. J., Schimke R. T. Effect of size on the relative rate of degradation of rat liver soluble proteins. Biochem Biophys Res Commun. 1970 Sep 30;40(6):1473–1480. doi: 10.1016/0006-291x(70)90034-3. [DOI] [PubMed] [Google Scholar]
- Dehlinger P. J., Schimke R. T. Size distribution of membrane proteins of rat liver and their relative rates of degradation. J Biol Chem. 1971 Apr 25;246(8):2574–2583. [PubMed] [Google Scholar]
- Dice J. F., Dehlinger P. J., Schimke R. T. Studies on the correlation between size and relative degradation rate of soluble proteins. J Biol Chem. 1973 Jun 25;248(12):4220–4228. [PubMed] [Google Scholar]
- Dice J. F., Schimke R. T. Turnover and exchange of ribosomal proteins from rat liver. J Biol Chem. 1972 Jan 10;247(1):98–111. [PubMed] [Google Scholar]
- Dice J. F., Schimke R. T. Turnover of chromosomal proteins from rat liver. Arch Biochem Biophys. 1973 Sep;158(1):97–105. doi: 10.1016/0003-9861(73)90601-2. [DOI] [PubMed] [Google Scholar]
- Drysdale J. W., Munro H. N. Regulation of synthesis and turnover of ferritin in rat liver. J Biol Chem. 1966 Aug 10;241(15):3630–3637. [PubMed] [Google Scholar]
- Feinstein R. N., Peraino C. Separation of soluble and particulate mouse liver catalase by isoelectric focusing. Biochim Biophys Acta. 1970 Jul 27;214(1):230–232. doi: 10.1016/0005-2795(70)90090-5. [DOI] [PubMed] [Google Scholar]
- Fritz P. J., White E. L., Pruitt K. M., Vesell E. S. Lactate dehydrogenase isozymes. Turnover in rat heart, skeletal muscle, and liver. Biochemistry. 1973 Oct 9;12(21):4034–4039. doi: 10.1021/bi00745a003. [DOI] [PubMed] [Google Scholar]
- Garfinkle D. B., Tershak D. R. Degradation of poliovirus polypeptides in vivo. Nat New Biol. 1972 Aug 16;238(85):206–208. doi: 10.1038/newbio238206a0. [DOI] [PubMed] [Google Scholar]
- Glass R. D., Doyle D. On the measurement of protein turnover in animal cells. J Biol Chem. 1972 Aug 25;247(16):5234–5242. [PubMed] [Google Scholar]
- Goldberg A. L. Correlation between rates of degradation of bacterial proteins in vivo and their sensitivity to proteases. Proc Natl Acad Sci U S A. 1972 Sep;69(9):2640–2644. doi: 10.1073/pnas.69.9.2640. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldberg A. L. Degradation of abnormal proteins in Escherichia coli (protein breakdown-protein structure-mistranslation-amino acid analogs-puromycin). Proc Natl Acad Sci U S A. 1972 Feb;69(2):422–426. doi: 10.1073/pnas.69.2.422. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldberg A. L., Dice J. F. Intracellular protein degradation in mammalian and bacterial cells. Annu Rev Biochem. 1974;43(0):835–869. doi: 10.1146/annurev.bi.43.070174.004155. [DOI] [PubMed] [Google Scholar]
- Goldberg A. L., Howell E. M., Li J. B., Martel S. B., Prouty W. F. Physiological significance of protein degradation in animal and bacterial cells. Fed Proc. 1974 Apr;33(4):1112–1120. [PubMed] [Google Scholar]
- Goldberg A. L. Protein turnover in skeletal muscle. I. Protein catabolism during work-induced hypertrophy and growth induced with growth hormone. J Biol Chem. 1969 Jun 25;244(12):3217–3222. [PubMed] [Google Scholar]
- Goldschmidt R. In vivo degradation of nonsense fragments in E. coli. Nature. 1970 Dec 19;228(5277):1151–1154. doi: 10.1038/2281151a0. [DOI] [PubMed] [Google Scholar]
- Gurd J. W., Evans W. H. Relative rates of degradation of mouse-liver surface-membrane proteins. Eur J Biochem. 1973 Jul 2;36(1):273–279. doi: 10.1111/j.1432-1033.1973.tb02910.x. [DOI] [PubMed] [Google Scholar]
- Hayashi N., Yoda B., Kikuchi G. Mechanism of allylisopropylacetamide-induced increase of delta-aminolevulinate synthetase in liver mitochondria. IV. Accumulation of the enzyme in the soluble fraction of rat liver. Arch Biochem Biophys. 1969 Apr;131(1):83–91. doi: 10.1016/0003-9861(69)90107-6. [DOI] [PubMed] [Google Scholar]
- Heaney A., Weller D. L. Isoelectric pH of hemoglobin and cytochrome C by electrofocusing. J Chem Educ. 1970 Oct;47(10):724–726. doi: 10.1021/ed047p724. [DOI] [PubMed] [Google Scholar]
- Hirsch-Kolb H., Heine J. P., Kolb H. J., Greenberg D. M. Comparative physical-chemical studies of mammalian arginases. Comp Biochem Physiol. 1970 Dec 1;37(3):345–359. doi: 10.1016/0010-406x(70)90563-3. [DOI] [PubMed] [Google Scholar]
- Ikehara Y., Endo H., Okada Y. The identity of the aldolases isolated from rat muscle and primary hepatoma. Arch Biochem Biophys. 1970 Feb;136(2):491–497. doi: 10.1016/0003-9861(70)90220-1. [DOI] [PubMed] [Google Scholar]
- KOSUGE T., KAMIYA H. A new cyclic dipeptide from peptone. Nature. 1960 Dec 24;188:1112–1112. doi: 10.1038/1881112a0. [DOI] [PubMed] [Google Scholar]
- Kemper B., Habener J. F., Potts J. T., Jr, Rich A. Proparathyroid hormone: identification of a biosynthetic precursor to parathyroid hormone. Proc Natl Acad Sci U S A. 1972 Mar;69(3):643–647. doi: 10.1073/pnas.69.3.643. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lin C. W., Orcutt M. L., Fishman W. H. Purification and characterization of mouse kidney beta-glucuronidase. J Biol Chem. 1975 Jun 25;250(12):4737–4743. [PubMed] [Google Scholar]
- Lin S., Zabin I. Beta-galactosidase. Rates of synthesis and degradation of incomplete chains. J Biol Chem. 1972 Apr 10;247(7):2205–2211. [PubMed] [Google Scholar]
- Litwack G., Rosenfield S. Coenzyme dissociation, a possible determinant of short half-life of inducible enzymes in mammalian liver. Biochem Biophys Res Commun. 1973 May 1;52(1):181–188. doi: 10.1016/0006-291x(73)90971-6. [DOI] [PubMed] [Google Scholar]
- Metzger R. P., Metzger S. A., Parsons R. L. A study of glucose and xylose oxidation catalyzed by the glucose-6-phosphate dehydrogenase of rat liver cytosol. Arch Biochem Biophys. 1972 Mar;149(1):102–109. doi: 10.1016/0003-9861(72)90303-7. [DOI] [PubMed] [Google Scholar]
- Miller J. E., Litwack G. Studies on soluble and mitochondrial tyrosine aminotransferase: evidence for a physical change in the cytosol enzyme during induction. Biochem Biophys Res Commun. 1969 Jul 7;36(1):35–41. doi: 10.1016/0006-291x(69)90645-7. [DOI] [PubMed] [Google Scholar]
- Noe B. D., Bauer G. E. Further characterization of a glucagon precursor from anglerfish islet tissue. Proc Soc Exp Biol Med. 1973 Jan;142(1):210–213. doi: 10.3181/00379727-142-36990. [DOI] [PubMed] [Google Scholar]
- Noyes B. E., Glatthaar B. E., Garavelli J. S., Bradshaw R. A. Structural and functional similarities between mitochondrial malate dehydrogenase and L-3-hydroxyacyl CoA dehydrogenase. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1334–1338. doi: 10.1073/pnas.71.4.1334. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olson J. P., Marquardt R. R. Avian fructose-1,6-diphosphatases. I. Purification and comparison of physical and immunological properties of the liver and breast muscle enzymes from chicken (Gallus domesticus). Biochim Biophys Acta. 1972 May 12;268(2):453–467. doi: 10.1016/0005-2744(72)90341-5. [DOI] [PubMed] [Google Scholar]
- Ono M., Inoue H., Suzuki F., Takeda Y. Studies on ornithine decarboxylase from the liver of thioacetamide-treated rats. Purification and some properties. Biochim Biophys Acta. 1972 Sep 19;284(1):285–297. doi: 10.1016/0005-2744(72)90067-8. [DOI] [PubMed] [Google Scholar]
- Pine M. J. Response of intracellular proteolysis to alteration of bacterial protein and the implications in metabolic regulation. J Bacteriol. 1967 May;93(5):1527–1533. doi: 10.1128/jb.93.5.1527-1533.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Platt T., Miller J. H., Weber K. In vivo degradation of mutant lac repressor. Nature. 1970 Dec 19;228(5277):1154–1156. doi: 10.1038/2281154a0. [DOI] [PubMed] [Google Scholar]
- Poole B. The kinetics of disappearance of labeled leucine from the free leucine pool of rat liver and its effect on the apparent turnover of catalase and other hepatic proteins. J Biol Chem. 1971 Nov;246(21):6587–6591. [PubMed] [Google Scholar]
- Prouty W. F., Karnovsky M. J., Goldberg A. L. Degradation of abnormal proteins in Escherichia coli. Formation of protein inclusions in cells exposed to amino acid analogs. J Biol Chem. 1975 Feb 10;250(3):1112–1122. [PubMed] [Google Scholar]
- Righetti P. G., Drysdale J. W. Small-scale fractionation of proteins and nucleic acids by isoelectric focusing in polyacrylamide gels. Ann N Y Acad Sci. 1973 Jun 15;209:163–186. doi: 10.1111/j.1749-6632.1973.tb47527.x. [DOI] [PubMed] [Google Scholar]
- Rippe D. F., Berry L. J. Immunological quantitation of hepatic tryptophan oxygenase in endotoxin-poisoned mice. Infect Immun. 1973 Oct;8(4):534–539. doi: 10.1128/iai.8.4.534-539.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Russell J. H., Geller D. M. Rat serum albumin biosynthesis: evidence for a precursor. Biochem Biophys Res Commun. 1973 Nov 1;55(1):239–245. doi: 10.1016/s0006-291x(73)80085-3. [DOI] [PubMed] [Google Scholar]
- SCHIMKE R. T., SWEENEY E. W., BERLIN C. M. THE ROLES OF SYNTHESIS AND DEGRADATION IN THE CONTROL OF RAT LIVER TRYPTOPHAN PYRROLASE. J Biol Chem. 1965 Jan;240:322–331. [PubMed] [Google Scholar]
- Schimke R. T., Sweeney E. W., Berlin C. M. Studies of the stability in vivo and in vitro of rat liver tryptophan pyrrolase. J Biol Chem. 1965 Dec;240(12):4609–4620. [PubMed] [Google Scholar]
- Schirmer M. D., Harper A. E. Adaptive responses of mammalian histidine-degrading enzymes. J Biol Chem. 1970 Mar 10;245(5):1204–1211. [PubMed] [Google Scholar]
- Segal H. L., Matsuzawa T., Haider M., Abraham G. J. What determines the half-life of proteins in vivo? Some experiences with alanine aminotransferase of rat tissues. Biochem Biophys Res Commun. 1969 Aug 22;36(5):764–770. doi: 10.1016/0006-291x(69)90675-5. [DOI] [PubMed] [Google Scholar]
- Smith C. M., Velick S. F. The glyceraldehyde 3-phosphate dehydrogenases of liver and muscle. Cooperative interactions and conditions for functional reversibility. J Biol Chem. 1972 Jan 10;247(1):273–284. [PubMed] [Google Scholar]
- Stahl P. D., Touster O. Beta-glucuronidase of rat liver lysosomes. Purification, properties, subunits. J Biol Chem. 1971 Sep 10;246(17):5398–5406. [PubMed] [Google Scholar]
- Steiner D. F., Clark J. L., Nolan C., Rubenstein A. H., Margoliash E., Aten B., Oyer P. E. Proinsulin and the biosynthesis of insulin. Recent Prog Horm Res. 1969;25:207–282. doi: 10.1016/b978-0-12-571125-8.50008-9. [DOI] [PubMed] [Google Scholar]
- Susor W. A., Kochman M., Rutter W. J. Heterogeneity of presumably homogeneous protein preparations. Science. 1969 Sep 19;165(3899):1260–1262. doi: 10.1126/science.165.3899.1260. [DOI] [PubMed] [Google Scholar]
- Taber R., Wertheimer R., Golrick J. Letter: Effect of an inhibitor of proteolysis on the size of newly-synthesized protein in HeLa cells. J Mol Biol. 1973 Oct 25;80(2):367–372. doi: 10.1016/0022-2836(73)90179-4. [DOI] [PubMed] [Google Scholar]
- Tweto J., Dehlinger P., Larrabee A. R. Relative turnover rates of subunits of rat liver fatty acid synthetase. Biochem Biophys Res Commun. 1972 Sep 26;48(6):1371–1377. doi: 10.1016/0006-291x(72)90864-9. [DOI] [PubMed] [Google Scholar]
- Wang C-C, Touster O. Turnover studies on proteins of rat liver lysosomes. J Biol Chem. 1975 Jul 10;250(13):4896–4902. [PubMed] [Google Scholar]