Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1975 Oct;72(10):3925–3929. doi: 10.1073/pnas.72.10.3925

Direct identification of the calcium-binding amino acid, gamma-carboxyglutamate, in mineralized tissue.

P V Hauschka, J B Lian, P M Gallop
PMCID: PMC433109  PMID: 1060074

Abstract

A direct approach has been developed for quantitative identification of the calcium-binding amino acid, gamma-carboxyglutamate, in proteins. This should be advantageous for the study of numerous systems where specific roles for the binding of calcium or other divalent cations are suspected. Investigation of mineralized tissue, where calcium-binding proteins are implicated in the mineralization process, revealed that gamma-carboxyglutamate was present in proteins solubilized from chicken bone with neutral aqueous ethylenediamine tetraacetic acid. This was established by direct isolation of the amino acid from alkaline hydrolysates and its quantitative conversion to glutamic acid by decarboxylation in 0.05 M HCl at 100 degrees. The kinetics of decarboxylation and chromatographic behavior are identical to those of gamma-carboxyglutamate from human prothrombin. After resolution of the soluble bone proteins by phosphate gradient elution from hydroxyapatite, gamma-carboxyglutamate was found to be concentrated primarily in one BaSO4-adsorbable anionic protein species; bone collagen was devoid of the amino acid. In view of the recently discovered requirement of vitamin K for generation of calcium binding sites (gamma-carboxyglutamate) by gamma-carboxylation of specific glutamic acid residues in prothrombin, our findings may implicate vitamin K metabolism in normal bone development and suggest a role for the gamma-carboxyglutamate-rich protein in regulation of calcium salt deposition in mineralized tissues.

Full text

PDF
3925

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews A. T., Herring G. M., Kent P. W. Some studies on the composition of bovine cortical-bone sialoprotein. Biochem J. 1967 Sep;104(3):705–715. doi: 10.1042/bj1040705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Carmichael D. K., Veis A., Wang E. T. Dentin matrix collagen: evidence for a covalently linked phosphoprotein attachment. Calcif Tissue Res. 1971;7(4):331–344. doi: 10.1007/BF02062622. [DOI] [PubMed] [Google Scholar]
  3. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  4. Davis N. R., Walker T. E. The role of carboxyl groups in collagen calcification. Biochem Biophys Res Commun. 1972 Sep 26;48(6):1656–1662. doi: 10.1016/0006-291x(72)90905-9. [DOI] [PubMed] [Google Scholar]
  5. Esmon C. T., Sadowski J. A., Suttie J. W. A new carboxylation reaction. The vitamin K-dependent incorporation of H-14-CO3- into prothrombin. J Biol Chem. 1975 Jun 25;250(12):4744–4748. [PubMed] [Google Scholar]
  6. Heeley J. D., Irving J. T. A comparison of histological methods for demonstrating calcification. Calcif Tissue Res. 1973 May 9;12(2):169–173. doi: 10.1007/BF02013732. [DOI] [PubMed] [Google Scholar]
  7. Howard J. B., Nelsestuen G. L. Properties of a Ca2+ binding peptide from prothrombin. Biochem Biophys Res Commun. 1974 Jul 24;59(2):757–763. doi: 10.1016/s0006-291x(74)80044-6. [DOI] [PubMed] [Google Scholar]
  8. Irving J. T., Wuthier R. E. Histochemistry and biochemistry of calcification with special reference to the role of lipids. Clin Orthop Relat Res. 1968 Jan-Feb;56:237–260. [PubMed] [Google Scholar]
  9. Johansson B. G. Agarose gel electrophoresis. Scand J Clin Lab Invest Suppl. 1972;124:7–19. doi: 10.3109/00365517209102747. [DOI] [PubMed] [Google Scholar]
  10. MacLennan D. H., Wong P. T. Isolation of a calcium-sequestering protein from sarcoplasmic reticulum. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1231–1235. doi: 10.1073/pnas.68.6.1231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Magnusson S., Sottrup-Jensen L., Petersen T. E., Morris H. R., Dell A. Primary structure of the vitamin K-dependent part of prothrombin. FEBS Lett. 1974 Aug 25;44(2):189–193. doi: 10.1016/0014-5793(74)80723-4. [DOI] [PubMed] [Google Scholar]
  12. Nelsestuen G. L., Suttie J. W. The mode of action of vitamin K. Isolation of a peptide containing the vitamin K-dependent portion of prothrombin. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3366–3370. doi: 10.1073/pnas.70.12.3366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nelsestuen G. L., Zytkovicz T. H., Howard J. B. The mode of action of vitamin K. Identification of gamma-carboxyglutamic acid as a component of prothrombin. J Biol Chem. 1974 Oct 10;249(19):6347–6350. [PubMed] [Google Scholar]
  14. Pettifor J. M., Benson R. Congenital malformations associated with the administration of oral anticoagulants during pregnancy. J Pediatr. 1975 Mar;86(3):459–462. doi: 10.1016/s0022-3476(75)80986-3. [DOI] [PubMed] [Google Scholar]
  15. Seyer J., Glimcher M. J. The amino acid sequence of two O-phosphoserine containing tripeptides isolated from the organic matrix of embryonic bovine enamel. Biochim Biophys Acta. 1969 Jul 1;181(2):410–418. doi: 10.1016/0005-2795(69)90274-8. [DOI] [PubMed] [Google Scholar]
  16. Skotland T., Holm T., Osterud B., Flengsrud R., Prydz H. The localization of a vitamin K-induced modification in an N-terminal fragment of human prothrombin. Biochem J. 1974 Oct;143(1):29–37. doi: 10.1042/bj1430029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Stenflo J., Fernlund P., Egan W., Roepstorff P. Vitamin K dependent modifications of glutamic acid residues in prothrombin. Proc Natl Acad Sci U S A. 1974 Jul;71(7):2730–2733. doi: 10.1073/pnas.71.7.2730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Stenflo J., Ganrot P. O. Binding of Ca 2+ to normal and dicoumarol-induced prothrombin. Biochem Biophys Res Commun. 1973 Jan 4;50(1):98–104. doi: 10.1016/0006-291x(73)91069-3. [DOI] [PubMed] [Google Scholar]
  19. Stenflo J. Vitamin K and the biosynthesis of prothrombin. 3. Structural comparison of an NH2-terminal fragment from normal and from dicoumarol-induced bovine prothrombin. J Biol Chem. 1973 Sep 25;248(18):6325–6332. [PubMed] [Google Scholar]
  20. Stenflo J. Vitamin K and the biosynthesis of prothrombin. II. Structural comparison of normal and dicoumarol-induced bovine prothrombin. J Biol Chem. 1972 Dec 25;247(24):8167–8175. [PubMed] [Google Scholar]
  21. Tejani N. Anticoagulant therapy with cardiac valve prosthesis during pregnancy. Obstet Gynecol. 1973 Nov;42(5):785–793. [PubMed] [Google Scholar]
  22. Tufty R. M., Kretsinger R. H. Troponin and parvalbumin calcium binding regions predicted in myosin light chain and T4 lysozyme. Science. 1975 Jan 17;187(4172):167–169. doi: 10.1126/science.1111094. [DOI] [PubMed] [Google Scholar]
  23. Urry D. W. Neutral sites for calcium ion binding to elastin and collagen: a charge neutralization theory for calcification and its relationship to atherosclerosis. Proc Natl Acad Sci U S A. 1971 Apr;68(4):810–814. doi: 10.1073/pnas.68.4.810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Veis A., Perry A. The phosphoprotein of the dentin matrix. Biochemistry. 1967 Aug;6(8):2409–2416. doi: 10.1021/bi00860a017. [DOI] [PubMed] [Google Scholar]
  25. Veis A., Spector A. R., Zamoscianyk H. The isolation of an EDTA-soluble phosphoprotein from mineralizing bovine dentin. Biochim Biophys Acta. 1972 Feb 29;257(2):404–413. doi: 10.1016/0005-2795(72)90293-0. [DOI] [PubMed] [Google Scholar]
  26. Wasserman R. H., Corradino R. A., Taylor A. N. Vitamin D-dependent calcium-binding protein. Purification and some properties. J Biol Chem. 1968 Jul 25;243(14):3978–3986. [PubMed] [Google Scholar]
  27. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
  28. Zytkovicz T. H., Nelsestuen G. L. [3H]diborane reduction of vitamin K-dependent calcium-binding proteins. Identification of a unique amino acid. J Biol Chem. 1975 Apr 25;250(8):2968–2972. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES