Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1975 Oct;72(10):4066–4070. doi: 10.1073/pnas.72.10.4066

Induction by alkylating agents of sister chromatid exchanges and chromatid breaks in Fanconi's anemia.

S A Latt, G Stetten, L A Juergens, G R Buchanan, P S Gerald
PMCID: PMC433139  PMID: 1060089

Abstract

Sister chromatid exchanges, which may reflect chromosome repair in response to certain types of DNA damage, provide a means of investigating the increased chromosome fragility characteristic of Fanconi's anemia. By a recently developed technique using 33258 Hoechst and 5-bromodeoxyuridine, it was observed that the baseline frequency of sister chromatid exchanges in phytohemagglutinin-stimulated lymphocytes from four males with Fanconi's anemia differed little from that of normal lymphocytes. However, addition of the bifunctional alkylating agent mitomycin C (0.01 or 0.03 mug/ml) to the Fanconi's anemia cells during culture induces less than half of the increase in exchanges found in identically treated normal lymphocytes. This reduced increment in exchanges in accompanied by a partial suppression of mitosis and a marked increase in chromatid breaks and rearrangements. Many of these events occur at sites of incomplete chromatid interchange. The increase in sister chromatid exchanges induced in Fanconi's anemia lymphocytes by the monofunctional alkylating agent ethylmethane sulfonate (0.25 mg/ml) was slightly less than that in normal cells. Lymphocytes from two sets of parents of the patients with Fanconi's anemia exhibited a normal response to alkylating agents, while dermal fibroblasts from two different patients with Fanconi's anemia reacted to mitomycin C with an increase in chromatid breaks, but a nearly normal increment of sister chromatid exchanges. The results suggest that chromosomal breaks and rearrangements in Fanconi's anemia lymphocytes may result from a defect in a form of repair of DNA damage.

Full text

PDF
4066

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bloom G. E., Warner S., Gerald P. S., Diamond L. K. Chromosome abnormalities in constitutional aplastic anemia. N Engl J Med. 1966 Jan 6;274(1):8–14. doi: 10.1056/NEJM196601062740102. [DOI] [PubMed] [Google Scholar]
  2. Brookes P., Lawley P. D. The reaction of mono- and di-functional alkylating agents with nucleic acids. Biochem J. 1961 Sep;80(3):496–503. doi: 10.1042/bj0800496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chaganti R. S., Schonberg S., German J. A manyfold increase in sister chromatid exchanges in Bloom's syndrome lymphocytes. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4508–4512. doi: 10.1073/pnas.71.11.4508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clark A. J. Recombination deficient mutants of E. coli and other bacteria. Annu Rev Genet. 1973;7:67–86. doi: 10.1146/annurev.ge.07.120173.000435. [DOI] [PubMed] [Google Scholar]
  5. Cleaver J. E. Xeroderma pigmentosum: a human disease in which an initial stage of DNA repair is defective. Proc Natl Acad Sci U S A. 1969 Jun;63(2):428–435. doi: 10.1073/pnas.63.2.428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cole R. S. Repair of DNA containing interstrand crosslinks in Escherichia coli: sequential excision and recombination. Proc Natl Acad Sci U S A. 1973 Apr;70(4):1064–1068. doi: 10.1073/pnas.70.4.1064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Crossen P. E., Mellor J. E., Adams A. C., Gunz F. W. Chromosome studies in Fancoi's anaemia before and after treatment with oxymetholone. Pathology. 1972 Jan;4(1):27–33. doi: 10.3109/00313027209068921. [DOI] [PubMed] [Google Scholar]
  8. De Weerd-Kastelein E. A., Keijzer W., Bootsma D. Genetic heterogeneity of xeroderma pigmentosum demonstrated by somatic cell hybridization. Nat New Biol. 1972 Jul 19;238(81):80–83. doi: 10.1038/newbio238080a0. [DOI] [PubMed] [Google Scholar]
  9. Dutrillauz B., Fosse A. M., Prieur M., Lejeune J. Analyse des échanges de chromatides dans les cellules somatiques humaines. Traitement au BUDR (5 bromodéoxyuridine) et fluorescence bicolore par l'acridine orange. Chromosoma. 1974;48(3):327–340. doi: 10.1007/BF00326509. [DOI] [PubMed] [Google Scholar]
  10. Fanconi G. Familial constitutional panmyelocytopathy, Fanconi's anemia (F.A.). I. Clinical aspects. Semin Hematol. 1967 Jul;4(3):233–240. [PubMed] [Google Scholar]
  11. Hecht F., McCaw B. K., Koler R. D. Ataxia-telangiectasia--clonal growth of translocation lymphocytes. N Engl J Med. 1973 Aug 9;289(6):286–291. doi: 10.1056/NEJM197308092890603. [DOI] [PubMed] [Google Scholar]
  12. Higurashi M., Conen P. E. In vitro chromosomal radiosensitivity in "chromosomal breakage syndromes". Cancer. 1973 Aug;32(2):380–383. doi: 10.1002/1097-0142(197308)32:2<380::aid-cncr2820320214>3.0.co;2-2. [DOI] [PubMed] [Google Scholar]
  13. Howard-Flanders P. DNA repair. Annu Rev Biochem. 1968;37:175–200. doi: 10.1146/annurev.bi.37.070168.001135. [DOI] [PubMed] [Google Scholar]
  14. IYER V. N., SZYBALSKI W. A MOLECULAR MECHANISM OF MITOMYCIN ACTION: LINKING OF COMPLEMENTARY DNA STRANDS. Proc Natl Acad Sci U S A. 1963 Aug;50:355–362. doi: 10.1073/pnas.50.2.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kato H. Induction of sister chromatid exchanges by chemical mutagens and its possible relevance to DNA repair. Exp Cell Res. 1974 Apr;85(2):239–247. doi: 10.1016/0014-4827(74)90123-2. [DOI] [PubMed] [Google Scholar]
  16. Kato H. Is isolabeling a false image? Exp Cell Res. 1974 Dec;89(2):416–420. doi: 10.1016/0014-4827(74)90811-8. [DOI] [PubMed] [Google Scholar]
  17. Kato H. Spontaneous sister chromatid exchanges detected by a BUdR-labelling method. Nature. 1974 Sep 6;251(5470):70–72. doi: 10.1038/251070a0. [DOI] [PubMed] [Google Scholar]
  18. Kim M. A. Chromatidaustausch und Heterochromatinveränderungen menschlicher Chromosomen nach BUdR-Markierung. Nachweis mit Benzimidazolfluorochrom und Giemsafarbstoff. Humangenetik. 1974;25(3):179–188. doi: 10.1007/BF00281425. [DOI] [PubMed] [Google Scholar]
  19. Korenberg J. R., Freedlender E. F. Giemsa technique for the detection of sister chromatid exchanges. Chromosoma. 1974;48(4):355–360. doi: 10.1007/BF00290992. [DOI] [PubMed] [Google Scholar]
  20. Latt S. A. Localization of sister chromatid exchanges in human chromosomes. Science. 1974 Jul 5;185(4145):74–76. doi: 10.1126/science.185.4145.74. [DOI] [PubMed] [Google Scholar]
  21. Latt S. A. Microfluorometric analysis of deoxyribonucleic acid replication kinetics and sister chromatid exchanges in human chromosomes. J Histochem Cytochem. 1974 Jul;22(7):478–491. doi: 10.1177/22.7.478. [DOI] [PubMed] [Google Scholar]
  22. Latt S. A. Microfluorometric detection of deoxyribonucleic acid replication in human metaphase chromosomes. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3395–3399. doi: 10.1073/pnas.70.12.3395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Latt S. A. Sister chromatid exchanges, indices of human chromosome damage and repair: detection by fluorescence and induction by mitomycin C. Proc Natl Acad Sci U S A. 1974 Aug;71(8):3162–3166. doi: 10.1073/pnas.71.8.3162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Meuth M., Green H. Induction of a deoxycytidineless state in cultured mammalian cells by bromodeoxyuridine. Cell. 1974 Jun;2(2):109–112. doi: 10.1016/0092-8674(74)90099-3. [DOI] [PubMed] [Google Scholar]
  25. Perry P., Wolff S. New Giemsa method for the differential staining of sister chromatids. Nature. 1974 Sep 13;251(5471):156–158. doi: 10.1038/251156a0. [DOI] [PubMed] [Google Scholar]
  26. Poon P. K., O'Brien R. L., Parker J. W. Defective DNA repair in Fanconi's anaemia. Nature. 1974 Jul 19;250(463):223–225. doi: 10.1038/250223a0. [DOI] [PubMed] [Google Scholar]
  27. Rupp W. D., Howard-Flanders P. Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation. J Mol Biol. 1968 Jan 28;31(2):291–304. doi: 10.1016/0022-2836(68)90445-2. [DOI] [PubMed] [Google Scholar]
  28. Sasaki M. S., Tonomura A. A high susceptibility of Fanconi's anemia to chromosome breakage by DNA cross-linking agents. Cancer Res. 1973 Aug;33(8):1829–1836. [PubMed] [Google Scholar]
  29. Setlow R. B., Regan J. D., German J., Carrier W. L. Evidence that xeroderma pigmentosum cells do not perform the first step in the repair of ultraviolet damage to their DNA. Proc Natl Acad Sci U S A. 1969 Nov;64(3):1035–1041. doi: 10.1073/pnas.64.3.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Setlow R. B., Setlow J. K. Effects of radiation on polynucleotides. Annu Rev Biophys Bioeng. 1972;1:293–346. doi: 10.1146/annurev.bb.01.060172.001453. [DOI] [PubMed] [Google Scholar]
  31. Shahid M. J., Khouri F. P., Ballas S. K. Fanconi's anaemia: report of a patient with significant chromosomal abnormalities in bone marrow cells. J Med Genet. 1972 Dec;9(4):474–478. doi: 10.1136/jmg.9.4.474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Strauss B., Coyle M., Robbins M. Alkylation damage and its repair. Cold Spring Harb Symp Quant Biol. 1968;33:277–287. doi: 10.1101/sqb.1968.033.01.032. [DOI] [PubMed] [Google Scholar]
  33. Swift M. Fanconi's anaemia in the genetics of neoplasia. Nature. 1971 Apr 9;230(5293):370–373. doi: 10.1038/230370a0. [DOI] [PubMed] [Google Scholar]
  34. Taylor J. H., Woods P. S., Hughes W. L. THE ORGANIZATION AND DUPLICATION OF CHROMOSOMES AS REVEALED BY AUTORADIOGRAPHIC STUDIES USING TRITIUM-LABELED THYMIDINEE. Proc Natl Acad Sci U S A. 1957 Jan 15;43(1):122–128. doi: 10.1073/pnas.43.1.122. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES