Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1975 Oct;72(10):4081–4084. doi: 10.1073/pnas.72.10.4081

Possible peptide chain termination mutants in thymide kinase gene of a mammalian virus, herpes simplex virus.

W P Summers, M Wagner, W C Summers
PMCID: PMC433142  PMID: 172894

Abstract

Mutations in the viral gene coding for the thymidine kinase (ATP:thymidine 5'-phosphotransferase, EC 2.7.1.75) induced by herpes simplex virus have been obtained by selection of virus resistant to bromodeoxyuridine when grown in thymidine-kinase-deficient LMTK- mouse cells. Proteins labeled after infection of Vero (monkey) cells with herpes simplex virus were analyzed by gel electrophoresis and one protein of about 40,000 daltons was consistently altered in a number of thymidine-kinase-deficient mutants. Many viral mutants lacked this peptide and one class of these mutants induced the synthesis of new shorter peptides. Revertant virus could be selected which simultaneously regained the ability to induce thymidine kinase activity, regained the intact thymidine kinase peptide, and lost the ability to synthesize the shorter peptide fragment. These mutants comprise a class of animal virus mutants which have the properties expected of peptide chain termination mutants.

Full text

PDF
4081

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brunovskis I., Hyman R. W., Summers W. C. Pasteurella pestis bacteriophage H and Escherichia coli bacteriophage phi II are nearly identical. J Virol. 1973 Feb;11(2):306–313. doi: 10.1128/jvi.11.2.306-313.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Buchan A., Luff S., Wallis C. Failure to demonstrate the interaction of subunits of thymidine kinase in cells simultaneously infected with herpes virus and a kinaseless mutant. J Gen Virol. 1970 Dec;9(3):239–242. doi: 10.1099/0022-1317-9-3-239. [DOI] [PubMed] [Google Scholar]
  3. Capecchi M. R., Capecchi N. E., Hughes S. H., Wahl G. M. Selective degradation of abnormal proteins in mammalian tissue culture cells. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4732–4736. doi: 10.1073/pnas.71.12.4732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cheng Y. C., Prusoff W. H. Mouse ascites Sarcoma 180 deoxythymidine kinase. General properties and inhibition studies. Biochemistry. 1974 Mar 12;13(6):1179–1185. doi: 10.1021/bi00703a019. [DOI] [PubMed] [Google Scholar]
  5. Cowan N. J., Secher D. S., Milstein C. Intracellular immunoglobulin chain synthesis in non-secreting variants of a mouse myeloma: detection of inactive light-chain messenger RNA. J Mol Biol. 1974 Dec 25;90(4):691–701. doi: 10.1016/0022-2836(74)90533-6. [DOI] [PubMed] [Google Scholar]
  6. DUBBS D. R., KIT S. MUTANT STRAINS OF HERPES SIMPLEX DEFICIENT IN THYMIDINE KINASE-INDUCING ACTIVITY. Virology. 1964 Apr;22:493–502. doi: 10.1016/0042-6822(64)90070-4. [DOI] [PubMed] [Google Scholar]
  7. Epstein H. F., Waterston R. H., Brenner S. A mutant affecting the heavy chain of myosin in Caenorhabditis elegans. J Mol Biol. 1974 Dec 5;90(2):291–300. doi: 10.1016/0022-2836(74)90374-x. [DOI] [PubMed] [Google Scholar]
  8. Hartman P. E., Roth J. R. Mechanisms of suppression. Adv Genet. 1973;17:1–105. doi: 10.1016/s0065-2660(08)60170-4. [DOI] [PubMed] [Google Scholar]
  9. Hawthorne D. C., Mortimer R. K. Genetic mapping of nonsense suppressors in yeast. Genetics. 1968 Dec;60(4):735–742. doi: 10.1093/genetics/60.4.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Honess R. W., Watson D. H. Herpes simplex virus-specific polypeptides studied by polyacrylamide gel electrophoresis of immune precipitates. J Gen Virol. 1974 Feb;22(2):171–185. doi: 10.1099/0022-1317-22-2-171. [DOI] [PubMed] [Google Scholar]
  11. Kuehl W. M., Scharff M. D. Synthesis of a carboxyl-terminal (constant region) fragment of the immunoglobulin light chain by a mouse myeloma cell line. J Mol Biol. 1974 Nov 5;89(3):409–421. doi: 10.1016/0022-2836(74)90472-0. [DOI] [PubMed] [Google Scholar]
  12. SZYBALSKA E. H., SZYBALSKI W. Genetics of human cess line. IV. DNA-mediated heritable transformation of a biochemical trait. Proc Natl Acad Sci U S A. 1962 Dec 15;48:2026–2034. doi: 10.1073/pnas.48.12.2026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Summers W. P. Chemically induced mutation of L-5178Y mouse leukemia cells from asparagine-dependence to asparagine-independence. Mutat Res. 1973 Dec;20(3):377–385. doi: 10.1016/0027-5107(73)90059-6. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES