Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1975 Oct;72(10):4100–4104. doi: 10.1073/pnas.72.10.4100

Protection of lethally irradiated mice with allogeneic fetal liver cells: influence of irradiation dose on immunologic reconstitution.

O Tulunay, R A Good, E J Yunis
PMCID: PMC433146  PMID: 673

Abstract

After lethal irradiation long-lived, immunologically vigorous C3Hf mice were produced by treatment with syngeneic fetal liver cells or syngeneic newborn or adult spleen cells. Treatment of lethally irradiated mice with syngeneic or allogeneic newborn thymus cells or allogeneic newborn or adult spleen cells regularly led to fatal secondary disease or graft-versus-host reactions. Treatment of the lethally irradiated mice with fetal liver cells regularly yielded long-lived, immunologically vigorous chimeras. The introduction of the fetal liver cells into the irradiated mice appeared to be followed by development of immunological tolerance of the donor cells. The findings suggest that T-cells at an early stage of differentiation are more susceptible to tolerance induction than are T-lymphocytes at later stages of differentiation. These investigations turned up a perplexing paradox which suggests that high doses of irradiation may injure the thymic stroma, rendering it less capable of supporting certain T-cell populations in the peripheral lymphoid tissue. Alternatively, the higher and not the lower dose of irradiation may have eliminated a host cell not readily derived from fetal liver precursors which represents an important helper cell in certain cell-mediated immune functions, e.g., graft-versus-host reactions, but which is not important in others, e.g., allograft rejections. The higher dose of lethal irradiation did not permit development or maintenance of a population of spleen cells that could initiate graft-versus-host reactions but did permit the development of a population of donor cells capable of achieving vigorous allograft rejection. These observations contribute to understanding of some of the persisting immunodeficiencies that are observed in man after fatal irradiation and bone marrow transplantation. These results should suggest better approaches to more effective cellular engineering for correction of immunodeficiency diseases and for treatment of immunodeficiency diseases and of leukemias and malignancies of man.

Full text

PDF
4100

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson R. E., Sprent J., Miller J. F. Cell-to-cell interaction in the immune response. 8. Radiosensitivity of thymus-derived lymphocytes. J Exp Med. 1972 Mar 1;135(3):711–717. doi: 10.1084/jem.135.3.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BARNES D. W., ILBERY P. L., LOUTIT J. F. Avoidance of secondary disease in radiation chimaeras. Nature. 1958 Feb 15;181(4607):488–488. doi: 10.1038/181488a0. [DOI] [PubMed] [Google Scholar]
  3. BARNES D. W., LOUTIT J. F., MICKLEM H. S. "Secondary disease" of radiation chimeras: a syndrome due to lymphoid aplasia. Ann N Y Acad Sci. 1962 Oct 24;99:374–385. doi: 10.1111/j.1749-6632.1962.tb45321.x. [DOI] [PubMed] [Google Scholar]
  4. BILLINGHAM R. E., SILVERS W. K. Quantitative studies on the ability of cells of different origins to induce tolerance of skin homografts and cause runt disease in neonatal mice. J Exp Zool. 1961 Mar;146:113–129. doi: 10.1002/jez.1401460202. [DOI] [PubMed] [Google Scholar]
  5. Balner H., Dicke K. A., van Putten L. M., van Bekkum D. W. Experimental aspects of bone marrow transplantation in primates. Transplant Proc. 1969 Mar;1(1):25–30. [PubMed] [Google Scholar]
  6. Bortin M. M., Saltzstein E. C. Graft versus host inhibition: fetal liver and thymus cells to minimize secondary disease. Science. 1969 Apr 18;164(3877):316–318. doi: 10.1126/science.164.3877.316. [DOI] [PubMed] [Google Scholar]
  7. COHEN M. W., THORBECKE G. J., HOCHWALD G. M., JACOBSON E. B. INDUCTION OF GRAFT-VERSUS-HOST REACTION IN NEWBORN MICE BY INJECTION OF NEWBORN OR ADULT HOMOLOGOUS THYMUS CELLS. Proc Soc Exp Biol Med. 1963 Oct;114:242–244. doi: 10.3181/00379727-114-28640. [DOI] [PubMed] [Google Scholar]
  8. Gengozian N., Makinodan T., Congdon C. C., Owen R. D. THE IMMUNE STATUS OF LONG-TERM SURVIVORS OF LETHALLY X-IRRADIATED MICE PROTECTED WITH ISOLOGOUS, HOMOLOGOUS, OR HETEROLOGOUS BONE MARROW. Proc Natl Acad Sci U S A. 1958 Jun;44(6):560–565. doi: 10.1073/pnas.44.6.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Miller J. F., De Burgh P. M., Dukor P., Grant G., Allman V., House W. Regeneration of thymus grafts. II. Effects on immunological capacity. Clin Exp Immunol. 1966 Jan;1(1):61–76. [PMC free article] [PubMed] [Google Scholar]
  10. Miller J. F., Osoba D. Current concepts of the immunological function of the thymus. Physiol Rev. 1967 Jul;47(3):437–520. doi: 10.1152/physrev.1967.47.3.437. [DOI] [PubMed] [Google Scholar]
  11. Stutman O., Yunis E. J., Good R. A. Carcinogen-induced tumors of the thymus. I. Restoration of neonatally thymectomized mice with a functional thymoma. J Natl Cancer Inst. 1968 Dec;41(6):1431–1452. [PubMed] [Google Scholar]
  12. Stutman O., Yunis E. J., Good R. A. Studies on thymus function. I. Cooperative effect of thymic function and lymphohemopoietic cells in restoration of neonatally thymectomized mice. J Exp Med. 1970 Sep 1;132(3):583–600. doi: 10.1084/jem.132.3.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Stutman O., Yunis E. J., Good R. A. Studies on thymus function. II. Cooperative effect of newborn and embryonic hemopoietic liver cells with thymus function. J Exp Med. 1970 Sep 1;132(3):601–612. doi: 10.1084/jem.132.3.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. TAYLOR R. B. IMMUNOLOGICAL COMPETENCE OF THYMUS CELLS AFTER TRANSFER TO THYMECTOMIZED RECIPIENTS. Nature. 1963 Aug 31;199:873–874. doi: 10.1038/199873a0. [DOI] [PubMed] [Google Scholar]
  15. TRENTIN J. J. Mortality and skin transplantability in x-irradiated mice receiving isologous, homologous or heterologous bone marrow. Proc Soc Exp Biol Med. 1956 Aug-Sep;92(4):688–693. doi: 10.3181/00379727-92-22582. [DOI] [PubMed] [Google Scholar]
  16. TYAN M. L., COLE L. J., DAVIS W. E., Jr THYMUS: ITS LIMITED ROLE IN THE RECOVERY OF HOMOGRAFT RESPONSE IN IRRADIATED MICE. Science. 1963 Nov 1;142(3592):584–584. doi: 10.1126/science.142.3592.584. [DOI] [PubMed] [Google Scholar]
  17. Taylor R. B. Pluripotential stem cells in mouse embryo liver. Br J Exp Pathol. 1965 Aug;46(4):376–383. [PMC free article] [PubMed] [Google Scholar]
  18. UPHOFF D. E. Genetic factors influencing irradiation protection by bone marrow. I. The F1 hybrid effect. J Natl Cancer Inst. 1957 Jul;19(1):123–130. [PubMed] [Google Scholar]
  19. UPHOFF D. E., LAW L. W. Genetic factors influencing irradiation protection by bone marrow. II. The histocompatibility-2 (H-2) locus. J Natl Cancer Inst. 1958 Mar;20(3):617–624. [PubMed] [Google Scholar]
  20. UPHOFF D. E. Perclusion of secondary phase of irradiation syndrome by inoculation of fetal hematopoietic tissue following lethal total-body x-irradiation. J Natl Cancer Inst. 1958 Mar;20(3):625–632. [PubMed] [Google Scholar]
  21. UPHOFF D. E. Perclusion of secondary phase of irradiation syndrome by inoculation of fetal hematopoietic tissue following lethal total-body x-irradiation. J Natl Cancer Inst. 1958 Mar;20(3):625–632. [PubMed] [Google Scholar]
  22. URSO I. S., CONGDON C. C., OWEN R. D. Effect of foreign fetal and newborn blood-forming tissues on survival of lethally irradiated mice. Proc Soc Exp Biol Med. 1959 Feb;100(2):395–399. doi: 10.3181/00379727-100-24640. [DOI] [PubMed] [Google Scholar]
  23. YUNIS E. J., HILGARD H. R., MARTINEZ C., GOOD R. A. STUDIES ON IMMUNOLOGIC RECONSTITUTION OF THYMECTOMIZED MICE. J Exp Med. 1965 Apr 1;121:607–632. doi: 10.1084/jem.121.4.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Yunis E. J., Good R. A., Smith J., Stutman O. Protection of lethally irradiated mice by spleen cells from neonatally thymectomized mice. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2544–2548. doi: 10.1073/pnas.71.6.2544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. van BEKKUM D., VOS O. Treatment of secondary disease in radiation chimaeras. Int J Radiat Biol Relat Stud Phys Chem Med. 1961 Mar;3:173–181. doi: 10.1080/09553006114550181. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES