Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1975 Oct;72(10):4110–4114. doi: 10.1073/pnas.72.10.4110

Cerebellar cell surface antigens of mouse brain.

N W Seeds
PMCID: PMC433148  PMID: 1105574

Abstract

Reaggregated cells from 6- to 8-day-old mouse cerebella have been used to raise antibodies in rabbits. The interaction of these antibodies with cerebellar cell surface components was assessed by cytotoxicity of 51Cr-labeled cerebellar cell cultures and indirect immunofluorescence. A quantitative comparison of the relative amount of antigen on cells from other mouse tissues, brain regions, cerebella of various aged mice and mutant mice, and other animal species, as well as several clonal cell lines of nervous system origin, was made. A fixed subthreshold concentration of antiserum was adsorbed with increasing numbers of dissociated cells or amounts of particulate tissue prior to incubation with complement and 51Cr-labeled cerebellar target cells. Mouse thymus, spleen, liver, and heart tissue possess negligible adsorbing capacity, whereas kidney and sperm gave some adsorption. Of the brain regions examined, only cerebellum removed all immunofluorescence and cytotoxic activity, whereas other regions removed less than 90%, suggesting the possibility of cerebellar specific antigens on certain cell types. Only mouse and rat cerebellum gave measurable adsorptions, and this capacity decreased with increasing age. Although cerebellar mutants (stagger, weaver, and nervous) possessed similar adsorptive capacity, glioma and neuroblastoma clonal cell lines differed measurably in their adsorption; only the mouse neuroblastoma clones displayed significant adsorption of the antiserum.

Full text

PDF
4110

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acton R. T., Morris R. J., Williams A. F. Estimation of the amount and tissue distribution of rat Thy-1.1 antigen. Eur J Immunol. 1974 Sep;4(9):598–602. doi: 10.1002/eji.1830040904. [DOI] [PubMed] [Google Scholar]
  2. Akeson R., Herschman H. R. Modulation of cell-surface antigens of a murine neuroblastoma. Proc Natl Acad Sci U S A. 1974 Jan;71(1):187–191. doi: 10.1073/pnas.71.1.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Amano T., Richelson E., Nirenberg M. Neurotransmitter synthesis by neuroblastoma clones (neuroblast differentiation-cell culture-choline acetyltransferase-acetylcholinesterase-tyrosine hydroxylase-axons-dendrites). Proc Natl Acad Sci U S A. 1972 Jan;69(1):258–263. doi: 10.1073/pnas.69.1.258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Artzt K., Bennett D., Jacob F. Primitive teratocarcinoma cells express a differentiation antigen specified by a gene at the T-locus in the mouse. Proc Natl Acad Sci U S A. 1974 Mar;71(3):811–814. doi: 10.1073/pnas.71.3.811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bonner W. A., Hulett H. R., Sweet R. G., Herzenberg L. A. Fluorescence activated cell sorting. Rev Sci Instrum. 1972 Mar;43(3):404–409. doi: 10.1063/1.1685647. [DOI] [PubMed] [Google Scholar]
  6. DeLong G. R. Histogenesis of fetal mouse isocortex and hippocampus in reaggregating cell cultures. Dev Biol. 1970 Aug;22(4):563–583. doi: 10.1016/0012-1606(70)90169-7. [DOI] [PubMed] [Google Scholar]
  7. Garber B. B., Moscona A. A. Reconstruction of brain tissue from cell suspensions. I. Aggregation patterns of cells dissociated from different regions of the developing brain. Dev Biol. 1972 Feb;27(2):217–234. doi: 10.1016/0012-1606(72)90099-1. [DOI] [PubMed] [Google Scholar]
  8. Goldschneider I., Moscona A. A. Tissue-specific cell-surface antigens in embryonic cells. J Cell Biol. 1972 May;53(2):435–449. doi: 10.1083/jcb.53.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Lehman J. M., Speers W. C., Swartzendruber D. E., Pierce G. B. Neoplastic differentiation: characteristics of cell lines derived from a murine teratocarcinoma. J Cell Physiol. 1974 Aug;84(1):13–27. doi: 10.1002/jcp.1040840103. [DOI] [PubMed] [Google Scholar]
  11. Martin S. E. Mouse brain antigen detected by rat anti-C1300 antiserum. Nature. 1974 May 3;249(452):71–73. doi: 10.1038/249071a0. [DOI] [PubMed] [Google Scholar]
  12. Schachner M., Hämmerling U. The postnatal development of antigens on mouse brain cell surfaces. Brain Res. 1974 Jun 20;73(2):362–371. doi: 10.1016/0006-8993(74)91058-0. [DOI] [PubMed] [Google Scholar]
  13. Schachner M. NS-1 (nervous system antigen-1), a glial-cell-specific antigenic component of the surface membrane. Proc Natl Acad Sci U S A. 1974 May;71(5):1795–1799. doi: 10.1073/pnas.71.5.1795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Seeds N. W. Biochemical differentiation in reaggregating brain cell culture. Proc Natl Acad Sci U S A. 1971 Aug;68(8):1858–1861. doi: 10.1073/pnas.68.8.1858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Seeds N. W. Expression of differentiated activities in reaggregated brain cell cultures. J Biol Chem. 1975 Jul 25;250(14):5455–5458. [PubMed] [Google Scholar]
  16. Seeds N. W., Gilman A. G., Amano T., Nirenberg M. W. Regulation of axon formation by clonal lines of a neural tumor. Proc Natl Acad Sci U S A. 1970 May;66(1):160–167. doi: 10.1073/pnas.66.1.160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Seeds N. W., Gilman A. G. Norepinephrine stinulated increase of cyclic AMP levels in developing mouse brain cell cultures. Science. 1971 Oct 15;174(4006):292–292. doi: 10.1126/science.174.4006.292. [DOI] [PubMed] [Google Scholar]
  18. Seeds N. W., Vatter A. E. Synaptogenesis in reaggregating brain cell culture. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3219–3222. doi: 10.1073/pnas.68.12.3219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sellinger O. Z., Legrand J., Clos J., Ohlsson W. G. Unequal patterns of development of succinate-dehydrogenase and acetylcholinesterase in Purkinje cell bodies and granule cells isolated in bulk from the cerebellar cortex of the immature rat. J Neurochem. 1974 Dec;23(6):1137–1144. doi: 10.1111/j.1471-4159.1974.tb12210.x. [DOI] [PubMed] [Google Scholar]
  20. ZIMMERMAN H. M. The nature of gliomas as revealed by animal experimentation. Am J Pathol. 1955 Jan-Feb;31(1):1–29. [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES