Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 1;71(Pt 1):o23. doi: 10.1107/S205698901402636X

Crystal structure of 3-bromo-4-di­methyl­amino-1-methyl-1,2,4-triazol-5(4H)-one

Gerhard Laus a,*, Thomas Gelbrich a, Klaus Wurst a, Herwig Schottenberger a
PMCID: PMC4331846  PMID: 25705486

Abstract

The title compound, C5H9BrN4O, was obtained as a minor by-product in the synthesis of 4-di­methyl­amino-1-methyl-1,2,4-triazolin-5-one. Except for the methyl groups of the 4-dimethylamino moiety, all the non-H atoms lie on a crystallographic mirror plane." In the crystal, the mol­ecules are linked by C—Br⋯O=C inter­actions [Br⋯O = 2.877 (2) Å, C—Br⋯O = 174.6 (1)°] into infinite chains in the c-axis direction.

Keywords: crystal structure; 1,2,4-triazol-5(4H)-one; Br⋯O=C inter­actions; halogen inter­actions

Related literature  

For synthesis of related 4-amino-1-methyl-1,2,4-triazolin-5-ones, see: Kröger et al. (1965). For related structures with Br⋯O=C inter­actions, see: 5-bromo­pyrimidin-2-one (Yathirajan et al., 2007); 3,5-di­bromo­pyran-2-one (Reus et al., 2012); N-bromo­saccharin (Dolenc & Modec, 2009); N-bromo­succinimide (Jabay et al., 1977); dibromantin (Kruszynski, 2007). For the theory of halogen inter­actions, see: Awwadi et al. (2006). For details of the synthesis, see: Schwärzler et al. (2009).graphic file with name e-71-00o23-scheme1.jpg

Experimental  

Crystal data  

  • C5H9BrN4O

  • M r = 221.07

  • Monoclinic, Inline graphic

  • a = 15.1993 (6) Å

  • b = 6.9377 (4) Å

  • c = 7.8771 (7) Å

  • β = 93.869 (3)°

  • V = 828.73 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.91 mm−1

  • T = 233 K

  • 0.09 × 0.08 × 0.07 mm

Data collection  

  • Nonius KappaCCD diffractometer

  • 2310 measured reflections

  • 806 independent reflections

  • 734 reflections with I > 2σ(I)

  • R int = 0.034

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.028

  • wR(F 2) = 0.065

  • S = 1.07

  • 806 reflections

  • 75 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698901402636X/fj2686sup1.cif

e-71-00o23-sup1.cif (89.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901402636X/fj2686Isup2.hkl

e-71-00o23-Isup2.hkl (44.9KB, hkl)

Supporting information file. DOI: 10.1107/S205698901402636X/fj2686Isup3.mol

Supporting information file. DOI: 10.1107/S205698901402636X/fj2686Isup4.cml

x y z . DOI: 10.1107/S205698901402636X/fj2686fig1.tif

The mol­ecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms. One component of the disordered C3 methyl group has been omitted for clarity. Symmetry code (i): x, −y, z.

ac . DOI: 10.1107/S205698901402636X/fj2686fig2.tif

Arrangement of the triazole rings parallel to the ac plane. One component of the disordered C3 methyl group has been omitted for clarity.

x y z x y z . DOI: 10.1107/S205698901402636X/fj2686fig3.tif

Infinite chains of mol­ecules linked by Br⋯O inter­actions. One component of the disordered C3 methyl group has been omitted for clarity. Symmetry code (ii): x, y, 1 + z; (iii): x, y, −1 + z.

CCDC reference: 1036852

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

S1. Comment

Triazolinones are of relevance due to their wide range of pesticidal activities. The molecular structure of 3-bromo-4-(dimethylamino)-1-methyl-1,2,4-triazolin-5-one is shown in Figure 1. The triazole rings are located in the crystallographic mirror plane (Figure 2), whereas the C4 methyl groups are situated out of this plane. The molecules are linked by short intermolecular C—Br···O=C contacts into infinite chains in the direction of the c axis (Figure 3). The Br···O distance of 2.877 (2) Å is significantly shorter than the sum of van der Waals radii. Theoretical calculations predicted negative ring and positive end cap domains of halogen atoms due to their polarizability (Awwadi et al., 2006). The almost linear C—Br···O angle of 174.6 (1)° indicates an interaction involving the positive end cap of the Br atom. Thus, the Br atom acts as an electron-acceptor (X-bond donor) in this case.

S2. Experimental

The title compound was obtained as a minor by-product in the synthesis of 4-(dimethylamino)-1-methyl-1,2,4-triazolin-5-one by hydrolysis of 5-bromo-4-(dimethylamino)-1-methyl-1,2,4-triazolium hexafluorophosphate (Schwärzler et al., 2009) in MeOH/H2O. It is assumed that the 5-bromo compound was contaminated with a trace of the corresponding 3,5-dibromo compound which resulted in the formation of the present 3-bromo-1,2,4-triazolin-5-one.

S3. Refinement

The H atoms were identified in a difference map and those of the C4 methyl group were idealized and included as rigid groups, allowed to rotate but not tip (C—H = 0.97 Å). The C3 methyl group was found to be disordered over two orientations related by mirror symmetry. Its H positions were refined with restrained C—H and H···H distances of 0.97 (1) Å and 1.58 (2) Å, respectively. The Uiso parameters of all H atoms were set to 1.5 Ueq(C) of the parent carbon atom.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms. One component of the disordered C3 methyl group has been omitted for clarity. Symmetry code (i): x, -y, z.

Fig. 2.

Fig. 2.

Arrangement of the triazole rings parallel to the ac plane. One component of the disordered C3 methyl group has been omitted for clarity.

Fig. 3.

Fig. 3.

Infinite chains of molecules linked by Br···O interactions. One component of the disordered C3 methyl group has been omitted for clarity. Symmetry code (ii): x, y, 1 + z; (iii): x, y, -1 + z.

Crystal data

C5H9BrN4O F(000) = 440
Mr = 221.07 Dx = 1.772 Mg m3
Monoclinic, C2/m Mo Kα radiation, λ = 0.71073 Å
a = 15.1993 (6) Å Cell parameters from 3066 reflections
b = 6.9377 (4) Å θ = 1.0–25.0°
c = 7.8771 (7) Å µ = 4.91 mm1
β = 93.869 (3)° T = 233 K
V = 828.73 (9) Å3 Prism, colorless
Z = 4 0.09 × 0.08 × 0.07 mm

Data collection

Nonius KappaCCD diffractometer 734 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.034
Graphite monochromator θmax = 25.1°, θmin = 2.6°
phi and ω scans h = −13→18
2310 measured reflections k = −8→8
806 independent reflections l = −9→8

Refinement

Refinement on F2 6 restraints
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.033P)2 + 0.5344P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max < 0.001
806 reflections Δρmax = 0.50 e Å3
75 parameters Δρmin = −0.44 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Br1 0.22218 (3) 0.0000 0.18788 (4) 0.03459 (19)
O1 0.17449 (19) 0.0000 −0.4649 (3) 0.0426 (8)
N1 0.3186 (2) 0.0000 −0.1029 (4) 0.0319 (8)
N2 0.2997 (2) 0.0000 −0.2784 (4) 0.0302 (8)
N3 0.1742 (2) 0.0000 −0.1669 (4) 0.0282 (7)
N4 0.0841 (2) 0.0000 −0.1382 (4) 0.0329 (8)
C1 0.2418 (3) 0.0000 −0.0415 (4) 0.0269 (9)
C2 0.2125 (3) 0.0000 −0.3221 (4) 0.0322 (10)
C3 0.3694 (3) 0.0000 −0.3938 (6) 0.0445 (11)
H3A 0.352 (3) −0.069 (5) −0.497 (4) 0.067* 0.5
H3B 0.4248 (19) −0.047 (6) −0.343 (6) 0.067* 0.5
H3C 0.375 (3) 0.136 (2) −0.420 (6) 0.067* 0.5
C4 0.04175 (19) 0.1766 (5) −0.2044 (4) 0.0478 (8)
H4A 0.0726 0.2877 −0.1550 0.072*
H4B −0.0192 0.1791 −0.1750 0.072*
H4C 0.0438 0.1801 −0.3272 0.072*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0454 (3) 0.0368 (3) 0.0211 (3) 0.000 −0.00047 (17) 0.000
O1 0.0429 (17) 0.067 (2) 0.0181 (14) 0.000 0.0024 (12) 0.000
N1 0.037 (2) 0.0330 (19) 0.0255 (17) 0.000 −0.0004 (14) 0.000
N2 0.0279 (19) 0.0367 (19) 0.0261 (17) 0.000 0.0020 (13) 0.000
N3 0.0257 (17) 0.0392 (19) 0.0197 (16) 0.000 0.0019 (12) 0.000
N4 0.0290 (18) 0.044 (2) 0.0252 (17) 0.000 0.0013 (13) 0.000
C1 0.035 (2) 0.027 (2) 0.019 (2) 0.000 −0.0026 (16) 0.000
C2 0.040 (3) 0.032 (2) 0.025 (2) 0.000 0.0051 (18) 0.000
C3 0.036 (3) 0.063 (3) 0.036 (2) 0.000 0.0124 (19) 0.000
C4 0.0402 (19) 0.059 (2) 0.0445 (18) 0.0125 (15) 0.0051 (14) 0.0066 (17)

Geometric parameters (Å, º)

Br1—C1 1.851 (4) N4—C4 1.464 (4)
O1—C2 1.230 (4) N4—C4i 1.464 (4)
N1—C1 1.292 (5) C3—H3A 0.967 (10)
N1—N2 1.392 (5) C3—H3B 0.965 (10)
N2—C2 1.346 (5) C3—H3C 0.969 (10)
N2—C3 1.442 (5) C4—H4A 0.9700
N3—C1 1.377 (4) C4—H4B 0.9700
N3—C2 1.389 (5) C4—H4C 0.9700
N3—N4 1.403 (4)
Br1···O1ii 2.876 (3)
C1—N1—N2 103.9 (3) O1—C2—N3 127.3 (4)
C2—N2—N1 112.8 (3) N2—C2—N3 103.8 (3)
C2—N2—C3 126.2 (3) N2—C3—H3A 111 (4)
N1—N2—C3 121.0 (3) N2—C3—H3B 113 (3)
C1—N3—C2 107.1 (3) H3A—C3—H3B 111 (2)
C1—N3—N4 125.0 (3) N2—C3—H3C 102 (4)
C2—N3—N4 127.9 (3) H3A—C3—H3C 109 (2)
N3—N4—C4 110.6 (2) H3B—C3—H3C 110 (2)
N3—N4—C4i 110.6 (2) N4—C4—H4A 109.5
C4—N4—C4i 113.7 (3) N4—C4—H4B 109.5
N1—C1—N3 112.4 (3) H4A—C4—H4B 109.5
N1—C1—Br1 125.0 (3) N4—C4—H4C 109.5
N3—C1—Br1 122.6 (3) H4A—C4—H4C 109.5
O1—C2—N2 128.9 (4) H4B—C4—H4C 109.5

Symmetry codes: (i) x, −y, z; (ii) x, y, z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: FJ2686).

References

  1. Awwadi, F. F., Willett, R. D., Peterson, K. A. & Twamley, B. (2006). Chem. Eur. J. 12, 8952–8960. [DOI] [PubMed]
  2. Dolenc, D. & Modec, B. (2009). New J. Chem. 33, 2344–2349.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
  5. Jabay, O., Pritzkow, H. & Jander, J. (1977). Z. Naturforsch. Teil B, 32, 1416–1420.
  6. Kröger, C.-F., Hummel, L., Mutscher, M. & Beyer, H. (1965). Chem. Ber. 98, 3025–3033.
  7. Kruszynski, R. (2007). Acta Cryst. C63, o389–o391. [DOI] [PubMed]
  8. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  9. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  10. Reus, C., Liu, N.-W., Bolte, M., Lerner, H.-W. & Wagner, M. (2012). J. Org. Chem. 77, 3518–3523. [DOI] [PubMed]
  11. Schwärzler, A., Laus, G., Kahlenberg, V., Wurst, K., Gelbrich, T., Kreutz, C., Kopacka, H., Bonn, G. & Schottenberger, H. (2009). Z. Naturforsch. Teil B, 64, 603–616.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  14. Yathirajan, H. S., Narayana, B., Ashalatha, B. V., Sarojini, B. K. & Bolte, M. (2007). Acta Cryst. E63, o923–o924.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698901402636X/fj2686sup1.cif

e-71-00o23-sup1.cif (89.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901402636X/fj2686Isup2.hkl

e-71-00o23-Isup2.hkl (44.9KB, hkl)

Supporting information file. DOI: 10.1107/S205698901402636X/fj2686Isup3.mol

Supporting information file. DOI: 10.1107/S205698901402636X/fj2686Isup4.cml

x y z . DOI: 10.1107/S205698901402636X/fj2686fig1.tif

The mol­ecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms. One component of the disordered C3 methyl group has been omitted for clarity. Symmetry code (i): x, −y, z.

ac . DOI: 10.1107/S205698901402636X/fj2686fig2.tif

Arrangement of the triazole rings parallel to the ac plane. One component of the disordered C3 methyl group has been omitted for clarity.

x y z x y z . DOI: 10.1107/S205698901402636X/fj2686fig3.tif

Infinite chains of mol­ecules linked by Br⋯O inter­actions. One component of the disordered C3 methyl group has been omitted for clarity. Symmetry code (ii): x, y, 1 + z; (iii): x, y, −1 + z.

CCDC reference: 1036852

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES