Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 1;71(Pt 1):94–96. doi: 10.1107/S2056989014026899

Crystal structure of (Z)-4-[1-(4-acetyl­anilino)ethyl­idene]-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one

Refaat M Mahfouz a, Zeynep Demircioğlu b, Mohamed S Abbady a, Orhan Büyükgüngör b,*
PMCID: PMC4331847  PMID: 25705461

In the solid state, the title compound, adopts the keto–amine tautomeric form, with the H atom attached to the N atom, which participates in an intra­molecular N—H⋯O hydrogen bond with an S(6) ring motif. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds to generate C(16) chains propagating in the [301] direction.

Keywords: crystal structure, Schiff bases, pyrazolone derivatives, keto–amine tautomeric form, hydrogen bonding, π–π stacking inter­actions

Abstract

In the solid state, the title compound, C20H19N3O2, adopts the keto–amine tautomeric form, with the H atom attached to the N atom, which participates in an intra­molecular N—H⋯O hydrogen bond with an S(6) ring motif. The dihedral angles between the pyrazole ring and the phenyl and benzene rings are 3.69 (10) and 46.47 (9)°, respectively. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds, generating C(16) chains propagating in [301]. Weak aromatic π–π stacking inter­actions [centroid–centroid distances = 3.6123 (10) and 3.6665 (10) Å] link the chains into a three-dimensional network.

Chemical context  

The chemistry of pyrazolone derivatives has attracted much attention because of their inter­esting structural properties and applications in diverse areas. Pyrazolone derivatives are also used as starting materials for the synthesis of biologically active compounds. Ethyl­idene species are of inter­est for this reaction system because they are a secondary C2 reaction inter­mediate, after ethyl species, expected from ethane by cleavage of two C—H bonds at the same carbon atom (Brooks et al., 2011).

Schiff base compounds have received considerable attention for many years, primarily due to their importance in the development of coordination chemistry related to magnetism (Weber et al., 2007), catalysis (Chen et al., 2008) and biological processes (May et al., 2004). In general, O-hy­droxy Schiff bases exhibit two possible tautomeric forms, the enol–imine and keto–amine forms. Depending on the tautomers, two types of intra­molecular hydrogen bonds are possible: O—H⋯N in the enol–imine and N—H⋯O in the keto–amine form. Schiff bases derived from acyl pyrazones and aromatic amines have been prepared as anti­microbial agents (Parmar et al., 2015) and also as ligands for the formation of metal-ion complexes (Jayarajan et al., 2010; Moorjani et al., 2010). A compound similar to the title compound, 5-methyl-2-phenyl-4-{1-[(pyridin-2-ylmeth­yl)-amino]-ethyl­idene}-2,4-di­hydro-pyrazol-3-one derived from acyl pyrazolone and aliphatic amine was reported to possesses the amino-one structure (Amarasekara et al., 2009).graphic file with name e-71-00094-scheme1.jpg

Structural commentary  

In the title compound (Fig. 1) the bond lengths indicate double-bond character for the C7=O1 [1.2472 (19) Å [and C8=C11 [1.389 (2) Å] bonds and single-bond character for the C11—N3 [1.339 (2) Å] and N3—C13 [1.413 (2) Å] bonds. Furthermore, the H1 atom was found to be located on atom N3, confirming that the title compound exists in the keto–amine form in the solid state.

Figure 1.

Figure 1

An ORTEP view of title compound, showing 30% probability displacement ellipsoids. The dashed line shows the intra­molecular N—H⋯O hydrogen bond.

An intra­molecular N3—H3A⋯O1 hydrogen bond is observed (Table 1, Fig. 1). This inter­action generates an S(6) ring motif. The 4-acetyl­phenyl­amino ethyl­idene and phenyl pyrazol groups of the mol­ecule are nearly planar, with r.m.s. deviations from the mean plane of 0.0430 and 0.0256 Å, respectively. The dihedral angle between these two groups is 47.81 (3)°. The dihedral angles between the pyrazole ring and the phenyl and benzene rings are 3.69 (10) and 46.47 (9)°, respectively. Similar results were observed in N-[(3-methyl-5-oxo-1-phenyl-4,5-di­hydro-1H-pyrazol-4-yl­idene)(phen­yl)meth­­yl]glycine ethyl ester (Zhang et al., 2004), ethyl 2-{[(1Z)-(3-methyl-5-oxo-1-phenyl-4,5-di­hydro-1H-pyrazol-4-yl­idene)(p-tol­yl)meth­yl]amino}-3-phenyl­propano­ate (Zhang et al., 2010) and 4-{[3,4-di­hydro-5-methyl-3-oxo-2-phenyl-2H-pyrazol-4-yl­idene](phen­yl)methyl­amino}-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (Wang et al., 2003).

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N3H3AO1 0.90(2) 1.88(2) 2.6527(18) 144(2)
C4H4O2i 0.93 2.57 3.403(2) 150

Symmetry code: (i) Inline graphic.

Supra­molecular features  

In the crystal, the mol­ecules are linked by C4—H4⋯O2 hydrogen bonds (Fig. 2, Table 1). The chains formed by these bonds along the c-axis direction are connected by two weak π–π stacking inter­actions [Cg1⋯Cg1(1 − x, 1 − y, 1 − z) = 3.6123 (10) and Cg1⋯Cg2(Inline graphic + x, Inline graphic − y, Inline graphic + z) = 3.6665 (10) Å; Cg1 and Cg2 are the centroids of the C7–C9/N1,N2 and C13–C18 rings, respectively], forming a three-dimensional network (Fig. 3).

Figure 2.

Figure 2

A packing diagram for title compound, showing the inter­molecular C—H⋯O and intra­molecular N—H⋯O hydrogen bonds. [Symmetry code: (i) Inline graphic + x, Inline graphic − y, Inline graphic + z.]

Figure 3.

Figure 3

A packing diagram for title compound showing the π–π stacking inter­actions (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity. Cg1 and Cg2 are the centroids of the pyrozolone and C13–C18 rings, respectively. [Symmetry codes: (ii) 1 − x, 1 − y, 1 − z; (iii) Inline graphic + x, Inline graphic − y, Inline graphic + z.]

Synthesis and crystallization  

The title compound was obtained by refluxing equimolar qu­anti­ties of 4-acetyl-3-methyl-1-phenyl-2-pyrazolin-5-one and 4-amino­aceto­phenone (10 mmol) in ethanol for 2 h. On cooling, the yellow precipitate was collected by filtration and recrystallized from an ethanol–dioxan solvent mixture as yellow slabs. Yield (73%); m.p. 439–441; IR (KBr) ν = 3450, 3350, 3300 (NH2, NH), 1676,1628 (C=O, s) cm−1; MS, m/z = 333.8. Calculated for C20H19N3O2: C, 72.05; H, 5.74; N, 12.60. Found: C, 72.20; H, 5.62; N, 12.78%.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atom bonded to the N atom was located in a difference Fourier map and was refined freely. All other H atoms were refined using a riding model with d(C—H) = 0.93 Å (U iso=1.2U eq of the parent atom) for aromatic C atoms and d(C—H) = 0.96 Å (U iso=1.5U eq of the parent atom) for methyl C atoms.

Table 2. Experimental details.

Crystal data
Chemical formula C20H19N3O2
M r 333.38
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c () 11.8549(4), 11.6070(5), 13.1591(5)
() 107.425(3)
V (3) 1727.60(12)
Z 4
Radiation type Mo K
(mm1) 0.09
Crystal size (mm) 0.80 0.57 0.10
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe Cie, 2002)
T min, T max 0.935, 0.991
No. of measured, independent and observed [I > 2(I)] reflections 25592, 3584, 2772
R int 0.056
(sin /)max (1) 0.628
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.050, 0.126, 1.07
No. of reflections 3584
No. of parameters 231
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
max, min (e 3) 0.17, 0.16

Computer programs: X-AREA and X-RED32 (Stoe Cie, 2002), SHELXS97 and SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows and WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989014026899/hb7330sup1.cif

e-71-00094-sup1.cif (875.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014026899/hb7330Isup2.hkl

e-71-00094-Isup2.hkl (196.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014026899/hb7330Isup3.cml

CCDC reference: 1038012

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

supplementary crystallographic information

Crystal data

C20H19N3O2 F(000) = 704
Mr = 333.38 Dx = 1.282 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 11.8549 (4) Å Cell parameters from 3705 reflections
b = 11.6070 (5) Å θ = 2.4–26.7°
c = 13.1591 (5) Å µ = 0.09 mm1
β = 107.425 (3)° T = 296 K
V = 1727.60 (12) Å3 Slab, yellow
Z = 4 0.80 × 0.57 × 0.10 mm

Data collection

Stoe IPDS 2 diffractometer 2772 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.056
ω–scan rotation method θmax = 26.5°, θmin = 2.4°
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) h = −14→14
Tmin = 0.935, Tmax = 0.991 k = −14→14
25592 measured reflections l = −16→16
3584 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: mixed
wR(F2) = 0.126 H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0592P)2 + 0.1897P] where P = (Fo2 + 2Fc2)/3
3584 reflections (Δ/σ)max < 0.001
231 parameters Δρmax = 0.17 e Å3
1 restraint Δρmin = −0.16 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.68663 (14) 0.70961 (15) 0.55951 (13) 0.0594 (4)
C2 0.78901 (16) 0.70082 (19) 0.64551 (16) 0.0771 (5)
H2 0.7865 0.6647 0.7079 0.093*
C3 0.89330 (18) 0.7453 (2) 0.6381 (2) 0.0931 (7)
H3 0.9614 0.7388 0.6957 0.112*
C4 0.89876 (19) 0.7993 (2) 0.5472 (2) 0.0923 (7)
H4 0.9701 0.8287 0.5427 0.111*
C5 0.79784 (19) 0.8096 (2) 0.46270 (19) 0.0838 (6)
H5 0.8011 0.8472 0.4012 0.101*
C6 0.69112 (16) 0.76487 (17) 0.46756 (16) 0.0698 (5)
H6 0.6234 0.7719 0.4097 0.084*
C7 0.47116 (14) 0.65691 (14) 0.49191 (12) 0.0542 (4)
C8 0.39461 (14) 0.60235 (13) 0.54463 (12) 0.0530 (4)
C9 0.46974 (15) 0.57875 (15) 0.65068 (12) 0.0583 (4)
C10 0.4410 (2) 0.5216 (2) 0.74124 (14) 0.0825 (6)
H10A 0.4126 0.4450 0.7208 0.099*
H10B 0.3811 0.5651 0.7598 0.099*
H10C 0.5107 0.5179 0.8015 0.099*
C11 0.27542 (14) 0.58305 (14) 0.49366 (12) 0.0536 (4)
C12 0.19337 (16) 0.53059 (17) 0.54741 (14) 0.0685 (5)
H12A 0.1621 0.5898 0.5822 0.103*
H12B 0.2356 0.4753 0.5992 0.103*
H12C 0.1296 0.4929 0.4954 0.103*
C13 0.11905 (14) 0.61084 (14) 0.31950 (12) 0.0545 (4)
C14 0.10632 (15) 0.57899 (16) 0.21567 (13) 0.0633 (4)
H14 0.1718 0.5538 0.1968 0.076*
C15 −0.00252 (15) 0.58422 (17) 0.13969 (14) 0.0661 (5)
H15 −0.0096 0.5630 0.0699 0.079*
C16 −0.10156 (14) 0.62055 (15) 0.16568 (13) 0.0595 (4)
C17 −0.08768 (15) 0.65196 (16) 0.27021 (15) 0.0663 (5)
H17 −0.1534 0.6762 0.2892 0.080*
C18 0.02076 (15) 0.64829 (16) 0.34677 (14) 0.0647 (4)
H18 0.0281 0.6708 0.4163 0.078*
C19 −0.22040 (16) 0.63304 (18) 0.08467 (17) 0.0739 (5)
C20 −0.23519 (19) 0.5992 (2) −0.02808 (16) 0.0863 (6)
H20A −0.2151 0.5193 −0.0307 0.104*
H20B −0.1841 0.6453 −0.0560 0.104*
H20C −0.3158 0.6111 −0.0700 0.104*
N1 0.57996 (12) 0.66251 (12) 0.56781 (10) 0.0576 (3)
N2 0.57755 (13) 0.61356 (13) 0.66442 (11) 0.0639 (4)
N3 0.23507 (12) 0.61234 (13) 0.39067 (11) 0.0586 (4)
O1 0.44674 (10) 0.69356 (12) 0.39873 (9) 0.0673 (3)
O2 −0.30253 (13) 0.67134 (17) 0.11080 (14) 0.1087 (6)
H3A 0.2925 (16) 0.6339 (18) 0.3635 (15) 0.086 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0516 (9) 0.0619 (10) 0.0649 (10) −0.0006 (7) 0.0176 (7) −0.0177 (8)
C2 0.0589 (10) 0.0909 (14) 0.0741 (12) −0.0009 (10) 0.0089 (9) −0.0204 (10)
C3 0.0577 (11) 0.1136 (18) 0.1009 (17) −0.0079 (11) 0.0128 (11) −0.0380 (15)
C4 0.0619 (12) 0.1057 (17) 0.1176 (18) −0.0214 (11) 0.0397 (12) −0.0490 (15)
C5 0.0779 (13) 0.0907 (15) 0.0948 (15) −0.0168 (11) 0.0439 (12) −0.0234 (12)
C6 0.0608 (10) 0.0796 (12) 0.0721 (11) −0.0067 (9) 0.0247 (9) −0.0135 (9)
C7 0.0521 (8) 0.0580 (9) 0.0512 (8) 0.0024 (7) 0.0136 (7) −0.0054 (7)
C8 0.0568 (9) 0.0529 (9) 0.0501 (8) 0.0012 (7) 0.0170 (7) −0.0024 (7)
C9 0.0649 (10) 0.0575 (9) 0.0504 (8) 0.0038 (8) 0.0140 (7) −0.0007 (7)
C10 0.0912 (14) 0.0940 (15) 0.0590 (10) −0.0028 (12) 0.0177 (10) 0.0137 (10)
C11 0.0579 (9) 0.0505 (9) 0.0537 (8) 0.0007 (7) 0.0186 (7) −0.0032 (7)
C12 0.0693 (11) 0.0700 (11) 0.0697 (11) −0.0055 (9) 0.0263 (9) 0.0063 (9)
C13 0.0499 (8) 0.0561 (9) 0.0568 (9) −0.0027 (7) 0.0148 (7) 0.0001 (7)
C14 0.0529 (9) 0.0800 (12) 0.0587 (9) 0.0079 (8) 0.0195 (7) −0.0031 (8)
C15 0.0619 (10) 0.0783 (12) 0.0554 (9) 0.0041 (9) 0.0133 (8) −0.0057 (8)
C16 0.0504 (9) 0.0597 (10) 0.0663 (10) −0.0039 (7) 0.0145 (7) 0.0045 (8)
C17 0.0525 (9) 0.0752 (12) 0.0760 (11) 0.0051 (8) 0.0267 (8) 0.0036 (9)
C18 0.0620 (10) 0.0753 (12) 0.0602 (9) 0.0041 (9) 0.0233 (8) −0.0053 (8)
C19 0.0530 (10) 0.0735 (12) 0.0898 (13) −0.0073 (9) 0.0133 (9) 0.0103 (10)
C20 0.0737 (13) 0.0826 (14) 0.0827 (13) −0.0088 (11) −0.0069 (10) 0.0038 (11)
N1 0.0527 (7) 0.0649 (8) 0.0527 (7) 0.0008 (6) 0.0120 (6) −0.0036 (6)
N2 0.0657 (9) 0.0692 (9) 0.0519 (7) 0.0039 (7) 0.0104 (6) 0.0015 (6)
N3 0.0496 (7) 0.0718 (9) 0.0546 (8) −0.0041 (6) 0.0158 (6) −0.0003 (6)
O1 0.0583 (7) 0.0915 (9) 0.0505 (6) −0.0052 (6) 0.0139 (5) 0.0071 (6)
O2 0.0523 (8) 0.1516 (16) 0.1176 (13) 0.0109 (9) 0.0185 (8) 0.0077 (11)

Geometric parameters (Å, º)

C1—C6 1.385 (3) C11—C12 1.493 (2)
C1—C2 1.393 (2) C12—H12A 0.9600
C1—N1 1.412 (2) C12—H12B 0.9600
C2—C3 1.370 (3) C12—H12C 0.9600
C2—H2 0.9300 C13—C14 1.380 (2)
C3—C4 1.370 (4) C13—C18 1.388 (2)
C3—H3 0.9300 C13—N3 1.413 (2)
C4—C5 1.373 (3) C14—C15 1.377 (2)
C4—H4 0.9300 C14—H14 0.9300
C5—C6 1.387 (3) C15—C16 1.383 (2)
C5—H5 0.9300 C15—H15 0.9300
C6—H6 0.9300 C16—C17 1.384 (2)
C7—O1 1.2472 (19) C16—C19 1.498 (2)
C7—N1 1.376 (2) C17—C18 1.376 (2)
C7—C8 1.443 (2) C17—H17 0.9300
C8—C11 1.389 (2) C18—H18 0.9300
C8—C9 1.439 (2) C19—O2 1.210 (2)
C9—N2 1.300 (2) C19—C20 1.494 (3)
C9—C10 1.490 (2) C20—H20A 0.9600
C10—H10A 0.9600 C20—H20B 0.9600
C10—H10B 0.9600 C20—H20C 0.9600
C10—H10C 0.9600 N1—N2 1.4006 (19)
C11—N3 1.339 (2) N3—H3A 0.895 (15)
C6—C1—C2 119.44 (17) H12A—C12—H12B 109.5
C6—C1—N1 121.12 (15) C11—C12—H12C 109.5
C2—C1—N1 119.44 (17) H12A—C12—H12C 109.5
C3—C2—C1 120.0 (2) H12B—C12—H12C 109.5
C3—C2—H2 120.0 C14—C13—C18 119.26 (15)
C1—C2—H2 120.0 C14—C13—N3 117.11 (14)
C4—C3—C2 120.9 (2) C18—C13—N3 123.42 (15)
C4—C3—H3 119.5 C15—C14—C13 120.55 (15)
C2—C3—H3 119.5 C15—C14—H14 119.7
C3—C4—C5 119.3 (2) C13—C14—H14 119.7
C3—C4—H4 120.3 C14—C15—C16 120.94 (16)
C5—C4—H4 120.3 C14—C15—H15 119.5
C4—C5—C6 121.1 (2) C16—C15—H15 119.5
C4—C5—H5 119.5 C15—C16—C17 117.95 (15)
C6—C5—H5 119.5 C15—C16—C19 122.73 (16)
C1—C6—C5 119.22 (19) C17—C16—C19 119.24 (16)
C1—C6—H6 120.4 C18—C17—C16 121.75 (16)
C5—C6—H6 120.4 C18—C17—H17 119.1
O1—C7—N1 126.05 (15) C16—C17—H17 119.1
O1—C7—C8 128.90 (14) C17—C18—C13 119.55 (16)
N1—C7—C8 105.04 (13) C17—C18—H18 120.2
C11—C8—C9 133.02 (15) C13—C18—H18 120.2
C11—C8—C7 122.26 (14) O2—C19—C20 120.93 (18)
C9—C8—C7 104.71 (14) O2—C19—C16 119.9 (2)
N2—C9—C8 111.89 (15) C20—C19—C16 119.16 (18)
N2—C9—C10 118.56 (15) C19—C20—H20A 109.5
C8—C9—C10 129.55 (16) C19—C20—H20B 109.5
C9—C10—H10A 109.5 H20A—C20—H20B 109.5
C9—C10—H10B 109.5 C19—C20—H20C 109.5
H10A—C10—H10B 109.5 H20A—C20—H20C 109.5
C9—C10—H10C 109.5 H20B—C20—H20C 109.5
H10A—C10—H10C 109.5 C7—N1—N2 111.72 (13)
H10B—C10—H10C 109.5 C7—N1—C1 128.96 (14)
N3—C11—C8 116.82 (14) N2—N1—C1 119.31 (13)
N3—C11—C12 119.81 (15) C9—N2—N1 106.63 (13)
C8—C11—C12 123.36 (14) C11—N3—C13 130.49 (14)
C11—C12—H12A 109.5 C11—N3—H3A 113.1 (13)
C11—C12—H12B 109.5 C13—N3—H3A 116.4 (13)
C6—C1—C2—C3 −0.8 (3) C15—C16—C17—C18 0.4 (3)
N1—C1—C2—C3 179.45 (18) C19—C16—C17—C18 −176.39 (17)
C1—C2—C3—C4 0.3 (3) C16—C17—C18—C13 −0.8 (3)
C2—C3—C4—C5 0.5 (3) C14—C13—C18—C17 0.6 (3)
C3—C4—C5—C6 −0.9 (3) N3—C13—C18—C17 175.11 (17)
C2—C1—C6—C5 0.5 (3) C15—C16—C19—O2 −175.8 (2)
N1—C1—C6—C5 −179.81 (16) C17—C16—C19—O2 0.7 (3)
C4—C5—C6—C1 0.4 (3) C15—C16—C19—C20 3.4 (3)
O1—C7—C8—C11 −0.1 (3) C17—C16—C19—C20 179.97 (18)
N1—C7—C8—C11 178.89 (14) O1—C7—N1—N2 179.96 (15)
O1—C7—C8—C9 −179.84 (17) C8—C7—N1—N2 0.89 (17)
N1—C7—C8—C9 −0.80 (16) O1—C7—N1—C1 0.2 (3)
C11—C8—C9—N2 −179.15 (17) C8—C7—N1—C1 −178.83 (15)
C7—C8—C9—N2 0.49 (19) C6—C1—N1—C7 3.6 (3)
C11—C8—C9—C10 1.4 (3) C2—C1—N1—C7 −176.73 (16)
C7—C8—C9—C10 −178.95 (18) C6—C1—N1—N2 −176.12 (16)
C9—C8—C11—N3 −177.17 (17) C2—C1—N1—N2 3.6 (2)
C7—C8—C11—N3 3.2 (2) C8—C9—N2—N1 0.04 (19)
C9—C8—C11—C12 1.8 (3) C10—C9—N2—N1 179.55 (16)
C7—C8—C11—C12 −177.78 (16) C7—N1—N2—C9 −0.60 (19)
C18—C13—C14—C15 0.0 (3) C1—N1—N2—C9 179.15 (14)
N3—C13—C14—C15 −174.80 (16) C8—C11—N3—C13 −175.30 (16)
C13—C14—C15—C16 −0.5 (3) C12—C11—N3—C13 5.7 (3)
C14—C15—C16—C17 0.3 (3) C14—C13—N3—C11 −142.71 (18)
C14—C15—C16—C19 176.95 (17) C18—C13—N3—C11 42.7 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H3A···O1 0.90 (2) 1.88 (2) 2.6527 (18) 144 (2)
C4—H4···O2i 0.93 2.57 3.403 (2) 150

Symmetry code: (i) x+3/2, −y+3/2, z+1/2.

References

  1. Amarasekara, A. S., Owereh, O. S., Lyssenko, K. A. & Timofeeva, T. V. (2009). J. Struct. Chem. 50, 1159–1165.
  2. Brooks, J. D., Chen, T. L., Mullins, D. R. & Cox, D. F. (2011). Surf. Sci. 605, 1170–1176.
  3. Chen, Z. H., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc. 130, 2170–2171. [DOI] [PubMed]
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Jayarajan, R., Vasuki, G. & Rao, P. S. (2010). Org. Chem. Int. Article ID 648589, 10.1155/2010/648589.
  6. May, J. P., Ting, R., Lermer, L., Thomas, J. M., Roupioz, Y. & Perrin, D. M. (2004). J. Am. Chem. Soc. 126, 4145–4156. [DOI] [PubMed]
  7. Moorjani, N. P., Vyas, K. M. & Jadeja, R. N. (2010). PRAJNA-J. Pure Appl. Sci. 18, 68–72.
  8. Parmar, N., Teraiya, S., Patel, R., Barad, H., Jajda, H. & Thakkar, V. (2015). J. Saudi Chem. Soc. In the press.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.
  12. Wang, J.-L., Yang, Y., Zhang, X. & Miao, F.-M. (2003). Acta Cryst. E59, o430–o432.
  13. Weber, B., Tandon, R. & Himsl, D. (2007). Z. Anorg. Allg. Chem. 633, 1159–1162.
  14. Zhang, X., Huang, M., Du, C. & Han, J. (2010). Acta Cryst. E66, o273. [DOI] [PMC free article] [PubMed]
  15. Zhang, X., Zhu, H., Xu, H. & Dong, M. (2004). Acta Cryst. E60, o1157–o1158.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989014026899/hb7330sup1.cif

e-71-00094-sup1.cif (875.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014026899/hb7330Isup2.hkl

e-71-00094-Isup2.hkl (196.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014026899/hb7330Isup3.cml

CCDC reference: 1038012

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES