Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 1;71(Pt 1):o3–o4. doi: 10.1107/S205698901402550X

Crystal structure of 2-meth­oxy-2-[(4-methyl­phen­yl)sulfan­yl]-1-phenyl­ethan-1-one

Julio Zukerman-Schpector a,*, Paulo R Olivato b, Henrique J Traesel b, Jéssica Valença b, Daniel N S Rodrigues b, Edward R T Tiekink c
PMCID: PMC4331849  PMID: 25705490

Abstract

In the title β-thio­carbonyl compound, C16H16O2S, the carbonyl and meth­oxy O atoms are approximately coplanar [O—C—C—O torsion angle = −18.2 (5)°] and syn to each other, and the tolyl ring is orientated to lie over them. The dihedral angle between the planes of the two rings is 44.03 (16)°. In the crystal, supra­molecular chains are formed along the c axis mediated by C—H⋯O inter­actions involving methine and methyl H atoms as donors, with the carbonyl O atom accepting both bonds; these pack with no specific inter­molecular inter­actions between them.

Keywords: crystal structure, β-thio­carbon­yl, C—H⋯O inter­actions

Related literature  

For general background to β-thio­carbonyl and β-bis­(thio­carbon­yl) compounds, see: Vinhato et al. (2013); Zukerman-Schpector et al. (2008). For related structures, see: Olivato et al. (2013); Distefano et al. (1996). For further synthetic details, see: Ali & McDermott (2002); Zoretic & Soja (1976).graphic file with name e-71-000o3-scheme1.jpg

Experimental  

Crystal data  

  • C16H16O2S

  • M r = 272.35

  • Orthorhombic, Inline graphic

  • a = 17.8579 (9) Å

  • b = 8.1257 (4) Å

  • c = 9.8317 (5) Å

  • V = 1426.66 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 293 K

  • 0.41 × 0.14 × 0.08 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.690, T max = 0.745

  • 5399 measured reflections

  • 2337 independent reflections

  • 1648 reflections with I > 2σ(I)

  • R int = 0.031

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.090

  • S = 1.02

  • 2337 reflections

  • 174 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.15 e Å−3

  • Absolute structure: Flack x determined using 552 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)

  • Absolute structure parameter: 0.02 (6)

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SIR (Burla et al., 2014; program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: MarvinSketch (ChemAxon, 2010) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S205698901402550X/hg5421sup1.cif

e-71-000o3-sup1.cif (184.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901402550X/hg5421Isup2.hkl

e-71-000o3-Isup2.hkl (128.5KB, hkl)

Supporting information file. DOI: 10.1107/S205698901402550X/hg5421Isup3.cml

. DOI: 10.1107/S205698901402550X/hg5421fig1.tif

The mol­ecular structure of the title compound showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.

c . DOI: 10.1107/S205698901402550X/hg5421fig2.tif

A view of the supra­molecular chain along the c axis mediated by C—H⋯O inter­actions (bluee dashed lines).

c . DOI: 10.1107/S205698901402550X/hg5421fig3.tif

A view in projection down the c axis of the unit-cell contents. The C—H⋯O inter­actions are shown as blue dashed lines.

CCDC reference: 1035425

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C1H1BO2i 0.96 2.49 3.366(6) 152
C8H8O2ii 0.98 2.46 3.323(6) 146

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We thank Professor Regina H. A. Santos from IQSC–USP for the X-ray data collection. The Brazilian agencies CNPq (305626/2013-2 to JZS; 301180/2013-0 to PRO) and FAPESP are acknowledged for financial support.

supplementary crystallographic information

S1. Introduction

As part of our on-going research on the conformational and electronic inter­actions of some β-thio-carbonyl and β-bis-thio-carbonyl compounds, e.g. N,N-di­ethyl-2-[(4-substituted) phenyl­thio]­acetamides, 1-methyl-3-phenyl­sulfonyl-2-piperidone, 3,3-bis­[(4-substituted)phenyl­sulfanyl]-1-methyl-2-piperidones, 2-alkyl­thio-2-alkyl­sulfinyl-aceto­phenones, 2-alkyl­thio-2-phenyl­sulfonyl-aceto­phenones and 2-alkyl­sulfinyl-2-alkyl­sulfonyl-aceto­phenones, utilizing spectroscopic , theoretical and X-ray diffraction methods (Vinhato et al., 2013; Zukerman-Schpector et al., 2008; Olivato et al., 2013; Distefano et al., 1996) the title compound was synthesized and its crystal structure determined.

S2. Experimental

S2.1. Synthesis and crystallization

4-Methyl­thio­penol (5.0 g, 40 mmol) was reacted with bromine (1.1 ml, 20 mmol) in di­chloro­methane (250 mL) on hydrated silica gel support (25 g of SiO2 and 12 mL of water) to give 4-methyl­phenyl di­sulfide (4.1 g, yield = 83%). A white solid was obtained after filtration and evaporation without further purification (Ali & McDermott, 2002). A solution of 2-meth­oxy aceto­phenone (0.4 mL, 2.76 mmol, Sigma-Aldrich) in THF (10 ml) was added drop wise to a cooled (195 K) solution of diiso­propyl­amine (0.42 ml, 3.04 mmol) and butyl­lithium (2.0 ml, 2.76 mmol) in THF (10 ml). After 30 minutes, a solution of 4-methyl­phenyl di­sulfide (0.748 g, 3.04 mmol) with hexa­methyl­phospho­ramide (HMPA) (0.5 ml, 2.76 mmol) dissolved in THF (10 ml) was added drop wise to the enolate solution (Zoretic & Soja, 1976). After stirring for 3 h, water (50 ml) was added at room temperature and extraction with di­ethyl ether was performed. The organic layer was then treated with a saturated solution of ammonium chloride until neutral pH and dried over anhydrous magnesium sulfate. A brown oil was obtained after evaporation of the solvent. Purification through flash chromatography with n-hexane was used to remove the non-polar rea­ctant (di­sulfide) then acetone to give a mixture of both aceto­phenones (product and rea­ctant). Crystallization was performed by vapour diffusion of n-hexane into a chloro­form solution held at 283 K to give pure product (0.3 g, yield = 40%). Suitable crystals for X-ray diffraction were obtained by same pathway; m.p. 359.3–359.8 K.

1H NMR (CDCl3, 500 MHz, ppm): δ 2.33 (s, 3H), 3.67 (s, 3H), 5.81 (s, 1H), 7.08–7.10 (m ,2H), 7.23-7.25 (m, 2H), 7.43–7.46(m, 2H),7.56–7.59 (m, 1H), 7.95–7.96 (m, 2H). HRMS: calcd. for C16H16O2S [M + H]+ 272.0871; found: 272.0864.

S2.2. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.93 to 0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2–1.5Ueq(C).

S3. Results and discussion

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.

Fig. 2.

Fig. 2.

A view of the supramolecular chain along the c axis mediated by C—H···O interactions (bluee dashed lines).

Fig. 3.

Fig. 3.

A view in projection down the c axis of the unit-cell contents. The C—H···O interactions are shown as blue dashed lines.

Crystal data

C16H16O2S Dx = 1.268 Mg m3
Mr = 272.35 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21 Cell parameters from 1023 reflections
a = 17.8579 (9) Å θ = 3.1–18.7°
b = 8.1257 (4) Å µ = 0.22 mm1
c = 9.8317 (5) Å T = 293 K
V = 1426.66 (12) Å3 Irregular, colourless
Z = 4 0.41 × 0.14 × 0.08 mm
F(000) = 576

Data collection

Bruker APEXII CCD diffractometer 1648 reflections with I > 2σ(I)
φ and ω scans Rint = 0.031
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) θmax = 25.4°, θmin = 2.8°
Tmin = 0.690, Tmax = 0.745 h = −21→21
5399 measured reflections k = −9→9
2337 independent reflections l = −10→11

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0294P)2 + 0.2164P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.090 (Δ/σ)max < 0.001
S = 1.02 Δρmax = 0.14 e Å3
2337 reflections Δρmin = −0.15 e Å3
174 parameters Absolute structure: Flack x determined using 552 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraint Absolute structure parameter: 0.02 (6)
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.3662 (3) 0.6856 (7) 1.3764 (5) 0.0916 (18)
H1A 0.3249 0.7532 1.4046 0.137*
H1B 0.4106 0.7185 1.4243 0.137*
H1C 0.3553 0.5725 1.3964 0.137*
C2 0.3784 (3) 0.7055 (6) 1.2258 (5) 0.0642 (13)
C3 0.3285 (3) 0.7876 (6) 1.1440 (6) 0.0737 (14)
H3 0.2850 0.8300 1.1823 0.088*
C4 0.3411 (3) 0.8094 (6) 1.0061 (5) 0.0683 (13)
H4 0.3066 0.8670 0.9537 0.082*
C5 0.4049 (2) 0.7455 (5) 0.9462 (5) 0.0564 (11)
C6 0.4553 (2) 0.6622 (5) 1.0273 (5) 0.0615 (12)
H6 0.4987 0.6186 0.9893 0.074*
C7 0.4416 (3) 0.6434 (5) 1.1643 (5) 0.0635 (13)
H7 0.4763 0.5868 1.2171 0.076*
C8 0.4839 (2) 0.9437 (5) 0.7603 (5) 0.0576 (10)
H8 0.4930 0.9708 0.6646 0.069*
C9 0.6015 (3) 0.8116 (6) 0.7474 (6) 0.0834 (15)
H9A 0.6139 0.8637 0.6627 0.125*
H9B 0.5771 0.7085 0.7299 0.125*
H9C 0.6465 0.7927 0.7987 0.125*
C10 0.4468 (2) 1.0888 (5) 0.8275 (5) 0.0559 (11)
C11 0.3852 (2) 1.1782 (5) 0.7587 (5) 0.0539 (10)
C12 0.3573 (2) 1.3181 (5) 0.8205 (5) 0.0674 (13)
H12 0.3767 1.3519 0.9037 0.081*
C13 0.3007 (3) 1.4083 (5) 0.7595 (7) 0.0793 (14)
H13 0.2828 1.5027 0.8021 0.095*
C14 0.2709 (3) 1.3608 (6) 0.6381 (7) 0.0781 (14)
H14 0.2325 1.4212 0.5983 0.094*
C15 0.2984 (3) 1.2225 (7) 0.5754 (5) 0.0840 (16)
H15 0.2780 1.1887 0.4930 0.101*
C16 0.3556 (3) 1.1333 (6) 0.6325 (5) 0.0736 (13)
H16 0.3748 1.0423 0.5868 0.088*
O1 0.55239 (15) 0.9162 (4) 0.8235 (3) 0.0666 (9)
O2 0.46803 (18) 1.1328 (4) 0.9400 (3) 0.0727 (9)
S 0.41986 (7) 0.76542 (13) 0.76791 (16) 0.0711 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.090 (4) 0.115 (5) 0.070 (4) −0.030 (3) 0.006 (3) 0.005 (3)
C2 0.065 (3) 0.064 (3) 0.064 (4) −0.020 (2) 0.006 (3) 0.000 (3)
C3 0.061 (3) 0.077 (3) 0.084 (4) −0.004 (3) 0.011 (3) 0.002 (3)
C4 0.064 (3) 0.064 (3) 0.077 (4) −0.001 (2) −0.007 (3) 0.006 (3)
C5 0.061 (3) 0.048 (2) 0.060 (3) −0.011 (2) −0.001 (2) −0.003 (2)
C6 0.061 (3) 0.056 (3) 0.067 (3) 0.000 (2) −0.001 (2) −0.001 (3)
C7 0.066 (3) 0.058 (3) 0.066 (4) −0.006 (2) −0.008 (3) 0.009 (3)
C8 0.070 (3) 0.058 (2) 0.045 (2) −0.0025 (19) −0.003 (3) 0.003 (3)
C9 0.084 (3) 0.095 (3) 0.072 (4) 0.024 (3) −0.003 (3) 0.000 (4)
C10 0.070 (3) 0.052 (3) 0.046 (3) −0.009 (2) 0.007 (2) 0.002 (2)
C11 0.061 (2) 0.051 (2) 0.049 (3) −0.0077 (18) 0.012 (3) 0.003 (3)
C12 0.066 (3) 0.065 (3) 0.071 (3) −0.009 (2) 0.012 (3) −0.013 (3)
C13 0.069 (3) 0.065 (3) 0.104 (4) 0.006 (2) 0.013 (4) −0.008 (4)
C14 0.064 (3) 0.077 (3) 0.094 (4) 0.009 (3) 0.013 (3) 0.013 (3)
C15 0.085 (3) 0.102 (4) 0.065 (4) 0.014 (3) −0.011 (3) 0.010 (3)
C16 0.090 (3) 0.078 (3) 0.053 (3) 0.017 (3) −0.004 (3) −0.007 (3)
O1 0.0665 (18) 0.077 (2) 0.057 (2) 0.0086 (16) −0.0038 (16) −0.0012 (16)
O2 0.094 (2) 0.076 (2) 0.048 (2) −0.0017 (17) −0.0047 (18) −0.0078 (19)
S 0.0948 (8) 0.0600 (6) 0.0583 (7) −0.0129 (6) −0.0079 (8) −0.0055 (8)

Geometric parameters (Å, º)

C1—C2 1.505 (7) C8—H8 0.9800
C1—H1A 0.9600 C9—O1 1.432 (5)
C1—H1B 0.9600 C9—H9A 0.9600
C1—H1C 0.9600 C9—H9B 0.9600
C2—C3 1.373 (7) C9—H9C 0.9600
C2—C7 1.376 (6) C10—O2 1.224 (5)
C3—C4 1.385 (7) C10—C11 1.480 (6)
C3—H3 0.9300 C11—C12 1.382 (6)
C4—C5 1.383 (6) C11—C16 1.398 (7)
C4—H4 0.9300 C12—C13 1.384 (6)
C5—C6 1.379 (6) C12—H12 0.9300
C5—S 1.781 (5) C13—C14 1.363 (8)
C6—C7 1.378 (6) C13—H13 0.9300
C6—H6 0.9300 C14—C15 1.373 (6)
C7—H7 0.9300 C14—H14 0.9300
C8—O1 1.390 (4) C15—C16 1.372 (6)
C8—C10 1.505 (5) C15—H15 0.9300
C8—S 1.847 (4) C16—H16 0.9300
C2—C1—H1A 109.5 O1—C9—H9A 109.5
C2—C1—H1B 109.5 O1—C9—H9B 109.5
H1A—C1—H1B 109.5 H9A—C9—H9B 109.5
C2—C1—H1C 109.5 O1—C9—H9C 109.5
H1A—C1—H1C 109.5 H9A—C9—H9C 109.5
H1B—C1—H1C 109.5 H9B—C9—H9C 109.5
C3—C2—C7 116.9 (5) O2—C10—C11 120.0 (4)
C3—C2—C1 122.3 (5) O2—C10—C8 119.2 (4)
C7—C2—C1 120.8 (5) C11—C10—C8 120.7 (4)
C2—C3—C4 122.0 (5) C12—C11—C16 117.9 (4)
C2—C3—H3 119.0 C12—C11—C10 118.1 (4)
C4—C3—H3 119.0 C16—C11—C10 123.9 (4)
C5—C4—C3 120.2 (5) C11—C12—C13 120.6 (5)
C5—C4—H4 119.9 C11—C12—H12 119.7
C3—C4—H4 119.9 C13—C12—H12 119.7
C6—C5—C4 118.4 (5) C14—C13—C12 120.9 (5)
C6—C5—S 121.0 (4) C14—C13—H13 119.5
C4—C5—S 120.6 (4) C12—C13—H13 119.5
C7—C6—C5 120.2 (5) C13—C14—C15 119.0 (5)
C7—C6—H6 119.9 C13—C14—H14 120.5
C5—C6—H6 119.9 C15—C14—H14 120.5
C2—C7—C6 122.3 (5) C16—C15—C14 121.0 (5)
C2—C7—H7 118.8 C16—C15—H15 119.5
C6—C7—H7 118.8 C14—C15—H15 119.5
O1—C8—C10 108.5 (4) C15—C16—C11 120.4 (5)
O1—C8—S 113.6 (3) C15—C16—H16 119.8
C10—C8—S 108.9 (3) C11—C16—H16 119.8
O1—C8—H8 108.6 C8—O1—C9 113.7 (3)
C10—C8—H8 108.6 C5—S—C8 101.8 (2)
S—C8—H8 108.6
C7—C2—C3—C4 −0.8 (7) O2—C10—C11—C16 −177.7 (4)
C1—C2—C3—C4 178.2 (4) C8—C10—C11—C16 2.3 (6)
C2—C3—C4—C5 1.0 (7) C16—C11—C12—C13 1.2 (6)
C3—C4—C5—C6 −0.7 (6) C10—C11—C12—C13 178.7 (4)
C3—C4—C5—S 177.5 (4) C11—C12—C13—C14 0.5 (7)
C4—C5—C6—C7 0.3 (6) C12—C13—C14—C15 −0.8 (7)
S—C5—C6—C7 −177.9 (4) C13—C14—C15—C16 −0.6 (8)
C3—C2—C7—C6 0.3 (7) C14—C15—C16—C11 2.4 (8)
C1—C2—C7—C6 −178.7 (4) C12—C11—C16—C15 −2.7 (7)
C5—C6—C7—C2 0.0 (7) C10—C11—C16—C15 180.0 (4)
O1—C8—C10—O2 −18.2 (5) C10—C8—O1—C9 −164.3 (3)
S—C8—C10—O2 105.9 (4) S—C8—O1—C9 74.4 (4)
O1—C8—C10—C11 161.7 (3) C6—C5—S—C8 −83.1 (4)
S—C8—C10—C11 −74.1 (4) C4—C5—S—C8 98.8 (4)
O2—C10—C11—C12 4.9 (6) O1—C8—S—C5 63.2 (4)
C8—C10—C11—C12 −175.0 (4) C10—C8—S—C5 −57.9 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C1—H1B···O2i 0.96 2.49 3.366 (6) 152
C8—H8···O2ii 0.98 2.46 3.323 (6) 146

Symmetry codes: (i) −x+1, −y+2, z+1/2; (ii) −x+1, −y+2, z−1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HG5421).

References

  1. Ali, M. H. & McDermott, M. (2002). Tetrahedron Lett. 43, 6271–6273.
  2. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2014). In preparation.
  5. ChemAxon (2010). Marvinsketch. http://www.chemaxon.com.
  6. Distefano, G., Dal Colle, M., De Palo, M., Jones, D., Bombieri, G., Del Pra, A., Olivato, P. R. & Mondino, M. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 1661–1669.
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Olivato, P. R., Cerqueira, C. Jr, Contieri, B., Santos, J. M. M. & Zukerman-Schpector, J. (2013). J. Sulfur Chem. 34, 617–626.
  9. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  10. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Vinhato, E., Olivato, P. R., Zukerman-Schpector, J. & Dal Colle, M. (2013). Spectrochim. Acta Part A, 115, 738–746. [DOI] [PubMed]
  13. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  14. Zoretic, P. A. & Soja, P. (1976). J. Org. Chem. 41, 3587–3589.
  15. Zukerman-Schpector, J., Olivato, P. R., Cerqueira Jr, C. R., Vinhato, E. & Tiekink, E. R. T. (2008). Acta Cryst. E64, o835–o836. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S205698901402550X/hg5421sup1.cif

e-71-000o3-sup1.cif (184.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901402550X/hg5421Isup2.hkl

e-71-000o3-Isup2.hkl (128.5KB, hkl)

Supporting information file. DOI: 10.1107/S205698901402550X/hg5421Isup3.cml

. DOI: 10.1107/S205698901402550X/hg5421fig1.tif

The mol­ecular structure of the title compound showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.

c . DOI: 10.1107/S205698901402550X/hg5421fig2.tif

A view of the supra­molecular chain along the c axis mediated by C—H⋯O inter­actions (bluee dashed lines).

c . DOI: 10.1107/S205698901402550X/hg5421fig3.tif

A view in projection down the c axis of the unit-cell contents. The C—H⋯O inter­actions are shown as blue dashed lines.

CCDC reference: 1035425

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES