Abstract
[Bis(trimethylsilyl)amino](tert-butylimino)thiophosphorane reacts in benzene with isopropyl alcohol via 1,2-addition of an iPrO–H bond across the P=N bond, resulting in the title compound, C13H35N2OPSSi2. In the molecule, the P atom possesses a distorted tetrahedral environment involving two N atoms from (Me3Si)2N– and tBuNH– groups, one O atom from an iPrO group and one S atom, therefore the molecule has a stereocenter on the P atom but crystal symmetry leads to a racemate. In the crystal, a pair of enantiomers form a centrosymmetric dimer via a pair of N—H⋯S hydrogen bonds.
Keywords: crystal structure, (trimethylsilyl)amino, phosphinothioate, N—H⋯S hydrogen bonding
Related literature
For details of the synthesis of [bis(trimethylsilyl)amino](tert-butylimino)thiophosphorane, see: Scherer & Kuhn (1974 ▸). For its chemical reactivity, see: Kovalenko et al. (2011a
▸,b
▸,c
▸, 2012 ▸); Rusanov et al. (1992 ▸); Scherer et al. (1978 ▸). For its applications in catalysis, see: Zhao et al. (2014a
▸,b
▸); Goldys & Dixon (2014 ▸); Samuel et al. (2014 ▸); Kawalec et al. (2012 ▸); Zhang et al. (2007 ▸).
Experimental
Crystal data
C13H35N2OPSSi2
M r = 354.64
Monoclinic,
a = 9.942 (3) Å
b = 11.907 (3) Å
c = 17.726 (5) Å
β = 100.52 (3)°
V = 2063.1 (10) Å3
Z = 4
Mo Kα radiation
μ = 0.35 mm−1
T = 100 K
0.30 × 0.20 × 0.20 mm
Data collection
Oxford Xcalibur PX κ-geometry diffractometer with a CCD area detector
36939 measured reflections
7436 independent reflections
5938 reflections with I > 2σ(I)
R int = 0.033
Refinement
R[F 2 > 2σ(F 2)] = 0.041
wR(F 2) = 0.115
S = 1.08
7436 reflections
184 parameters
H atoms treated by a mixture of independent and constrained refinement
Δρmax = 0.84 e Å−3
Δρmin = −0.34 e Å−3
Data collection: CrysAlis CCD (Oxford Diffraction, 2003 ▸); cell refinement: CrysAlis RED (Oxford Diffraction, 2003 ▸); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008 ▸); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008 ▸); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012 ▸); software used to prepare material for publication: publCIF (Westrip, 2010 ▸).
Supplementary Material
Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S205698901402622X/xu5831sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901402622X/xu5831Isup2.hkl
Supporting information file. DOI: 10.1107/S205698901402622X/xu5831Isup3.cml
ORTEP . DOI: 10.1107/S205698901402622X/xu5831fig1.tif
An ORTEP view of the molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.
CCDC reference: 1036750
Additional supporting information: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (, ).
| DHA | DH | HA | D A | DHA |
|---|---|---|---|---|
| N2H2Si | 0.848(16) | 2.631(16) | 3.4326(13) | 158.2(14) |
Symmetry code: (i)
.
supplementary crystallographic information
S1. Comments
[Bis(trimethylsilyl)amino](tert-butylimino)thiophosphorane was first synthesized by Scherer and Kuhn in 1974, see: Scherer & Kuhn (1974), and later some general chemical reactivity of this compound was studied, see: Scherer et al. (1978). Based on these early results, pentavalent tricoordinated σ3λ5-phosphoranes recommended themselves as promising ligands for the obtaining of new organometallic metallacycles with specific features. Recently we have reported and characterized series of transition metal metallacycles, containing phosphorus atom in cyclic moiety, see: Kovalenko et al. (2011a, 2011b, 2011c, 2012); Rusanov et al. (1992). In current communication we reported the reactivity of [bis(trimethylsilyl)amino](tert-butylimino)-thiophosphorane with isopropyl alcohol. The reaction proceeds through a 1,2-addition of iPrO–H bond across the P=N bond, resulting in the title compound. Resulted product was characterized by single X-ray analysis and 1H, 13C and 31P NMR spectroscopy. In these latter days it was discovered that low-coordinate phosphorus compounds are catalytically active and might be efficiently applied in catalysis, see: Zhao et al. (2014a, 2014b); Goldys & Dixon (2014); Samuel et al. (2014); Kawalec et al. (2012); Zhang et al. (2007).
Central P atom posesses distorted tetrahedral environment of four different substituents: (Me3Si)2N-, tBuNH- and iPrO- groups and S atom, resulting in stereocenter on phosphorus. R and S isomers form centrosymmetric dimers due to the formation of a pair of N—H···S type hydrogen bonds. Geometrical parameters of O-isopropyl [bis(trimethylsilyl)amino](tert-butylamino)phosphinothioate are consistent with the values reported earlier (Rusanov et al., 1992; Kovalenko et al., 2011a, 2011b) for the compounds containing analogous phosphinothioates, but deprotonated and coordinated to metal centers.
S2. Experimental
All procedures were carried out under a dry argon atmosphere using standard Schlenk and glovebox techniques. Benzene and hexane were distilled from sodium-potassium alloy directly before use. Isopropyl alcohol was dried and distilled from magnesium and stored over 4 Å molecular sieves prior to use.
In a Schlenk flask, (0.884 g, 3.0 mmol) of [bis(trimethylsilyl)amino](tert-butylimino)thiophosphorane was dissolved in 3 ml of benzene and the solution of isopropyl alcohol (0.23 ml, 3.0 mmol) in 1 ml of benzene was added dropwise. The mixture was stirred for 1.5 h at room temperature, thereafter solvent was removed in vacuo producing an almost colorless tar. The residue was dissolved in 1 ml of hexane and kept at 252 K in order to induce further crystallization. Yield: 0.76 g, 71% of colorless crystals. 1H NMR (400 MHz, C6D6, 298K): δ 5.00 (m, 1H), 2.45 (d, 2JP—H=10.3 Hz, 1H), 1.27 (d, 3JH—H=6.0 Hz, 3H), 1.19 (d, 3JH—H=6.0 Hz, 3H), 1.15 (s, 9H), 0.47 (18H); 13C{1H} NMR (100 MHz, C6D6, 298K): δ 71.52 (d, 2JP—C=4.6 Hz), 52.72 (d, 2JP—C=4.6 Hz), 31.58, 31.53, 23.98, 23.92, 5.26 (d, 3JP—C=2.3 Hz); 31P{1H} NMR (162 MHz, C6D6, 298K): δ 63.24 (dd, 2JP—H=10.3 Hz, 3JP—H=10.3 Hz).
S3. Refinement
Positions of hydrogen atoms bonded to carbon were generated in idealized geometries using a riding model with Uiso(H) = 1.5Ueq(C) or 1.2Ueq(C). The fractional coordinates of the H atom attached to N2 were identified from a difference Fourier map and refined freely with isotropic thermal displacement parameter.
Figures
Fig. 1.

An ORTEP view of the molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.
Crystal data
| C13H35N2OPSSi2 | F(000) = 776 |
| Mr = 354.64 | Dx = 1.142 Mg m−3 |
| Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
| a = 9.942 (3) Å | Cell parameters from 25646 reflections |
| b = 11.907 (3) Å | θ = 4–32.6° |
| c = 17.726 (5) Å | µ = 0.35 mm−1 |
| β = 100.52 (3)° | T = 100 K |
| V = 2063.1 (10) Å3 | Block, colourless |
| Z = 4 | 0.30 × 0.20 × 0.20 mm |
Data collection
| Oxford Xcalibur PX κ-geometry diffractometer with a CCD area detector | 5938 reflections with I > 2σ(I) |
| Radiation source: fine-focus sealed tube | Rint = 0.033 |
| Graphite monochromator | θmax = 32.6°, θmin = 4.7° |
| ω and φ scans | h = −15→14 |
| 36939 measured reflections | k = −17→18 |
| 7436 independent reflections | l = −26→26 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.115 | H atoms treated by a mixture of independent and constrained refinement |
| S = 1.08 | w = 1/[σ2(Fo2) + (0.071P)2] where P = (Fo2 + 2Fc2)/3 |
| 7436 reflections | (Δ/σ)max = 0.019 |
| 184 parameters | Δρmax = 0.84 e Å−3 |
| 0 restraints | Δρmin = −0.34 e Å−3 |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| S | 0.06612 (3) | 0.50611 (2) | 0.38496 (2) | 0.01778 (8) | |
| P | 0.03058 (3) | 0.34478 (2) | 0.38973 (2) | 0.01212 (8) | |
| O1 | −0.06932 (9) | 0.29955 (7) | 0.31509 (5) | 0.01497 (17) | |
| C11 | −0.19850 (13) | 0.35845 (11) | 0.28645 (7) | 0.0197 (2) | |
| H11 | −0.2199 | 0.4103 | 0.3270 | 0.024* | |
| C21 | −0.30994 (14) | 0.27054 (13) | 0.26853 (8) | 0.0265 (3) | |
| H21A | −0.3976 | 0.3074 | 0.2492 | 0.040* | |
| H21B | −0.2880 | 0.2189 | 0.2295 | 0.040* | |
| H21C | −0.3163 | 0.2285 | 0.3153 | 0.040* | |
| C31 | −0.18259 (16) | 0.42557 (13) | 0.21616 (9) | 0.0307 (3) | |
| H31A | −0.2682 | 0.4653 | 0.1965 | 0.046* | |
| H31B | −0.1084 | 0.4802 | 0.2299 | 0.046* | |
| H31C | −0.1609 | 0.3747 | 0.1766 | 0.046* | |
| Si1 | 0.18608 (4) | 0.19371 (3) | 0.30180 (2) | 0.01607 (8) | |
| C1 | 0.05411 (14) | 0.08448 (11) | 0.26893 (8) | 0.0228 (3) | |
| H1A | 0.0714 | 0.0505 | 0.2212 | 0.034* | |
| H1B | 0.0584 | 0.0263 | 0.3084 | 0.034* | |
| H1C | −0.0368 | 0.1191 | 0.2598 | 0.034* | |
| C2 | 0.19037 (16) | 0.29925 (12) | 0.22471 (8) | 0.0257 (3) | |
| H2A | 0.2019 | 0.2607 | 0.1774 | 0.038* | |
| H2B | 0.1044 | 0.3417 | 0.2155 | 0.038* | |
| H2C | 0.2671 | 0.3509 | 0.2406 | 0.038* | |
| C3 | 0.35141 (14) | 0.11555 (12) | 0.31640 (9) | 0.0255 (3) | |
| H3A | 0.3617 | 0.0785 | 0.2684 | 0.038* | |
| H3B | 0.4272 | 0.1682 | 0.3319 | 0.038* | |
| H3C | 0.3521 | 0.0589 | 0.3566 | 0.038* | |
| Si2 | 0.31243 (3) | 0.29123 (3) | 0.46123 (2) | 0.01629 (8) | |
| C4 | 0.43267 (13) | 0.38055 (12) | 0.41764 (8) | 0.0225 (3) | |
| H4A | 0.5138 | 0.3973 | 0.4564 | 0.034* | |
| H4B | 0.4602 | 0.3403 | 0.3747 | 0.034* | |
| H4C | 0.3870 | 0.4508 | 0.3990 | 0.034* | |
| C5 | 0.38927 (14) | 0.15588 (12) | 0.50201 (9) | 0.0253 (3) | |
| H5A | 0.4697 | 0.1716 | 0.5415 | 0.038* | |
| H5B | 0.3217 | 0.1142 | 0.5248 | 0.038* | |
| H5C | 0.4166 | 0.1109 | 0.4610 | 0.038* | |
| C6 | 0.27586 (13) | 0.37228 (13) | 0.54548 (8) | 0.0232 (3) | |
| H6A | 0.3612 | 0.3845 | 0.5820 | 0.035* | |
| H6B | 0.2353 | 0.4449 | 0.5281 | 0.035* | |
| H6C | 0.2118 | 0.3299 | 0.5705 | 0.035* | |
| N1 | 0.16513 (10) | 0.26205 (8) | 0.38890 (6) | 0.01379 (19) | |
| N2 | −0.04109 (11) | 0.31950 (8) | 0.46402 (6) | 0.01388 (19) | |
| H2 | −0.0419 (15) | 0.3767 (13) | 0.4924 (9) | 0.017* | |
| C7 | −0.09601 (12) | 0.21560 (10) | 0.49410 (7) | 0.0143 (2) | |
| C8 | −0.08932 (13) | 0.11580 (10) | 0.44119 (7) | 0.0186 (2) | |
| H8A | −0.1261 | 0.0490 | 0.4626 | 0.028* | |
| H8B | −0.1436 | 0.1320 | 0.3904 | 0.028* | |
| H8C | 0.0060 | 0.1021 | 0.4365 | 0.028* | |
| C9 | −0.24488 (13) | 0.23858 (12) | 0.50102 (8) | 0.0228 (3) | |
| H9A | −0.2838 | 0.1715 | 0.5207 | 0.034* | |
| H9B | −0.2482 | 0.3014 | 0.5363 | 0.034* | |
| H9C | −0.2978 | 0.2576 | 0.4504 | 0.034* | |
| C10 | −0.01281 (14) | 0.18979 (11) | 0.57379 (7) | 0.0204 (3) | |
| H10A | −0.0483 | 0.1215 | 0.5940 | 0.031* | |
| H10B | 0.0834 | 0.1786 | 0.5700 | 0.031* | |
| H10C | −0.0203 | 0.2528 | 0.6084 | 0.031* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| S | 0.02695 (17) | 0.01109 (14) | 0.01685 (16) | −0.00040 (11) | 0.00810 (12) | −0.00059 (10) |
| P | 0.01485 (14) | 0.01073 (14) | 0.01114 (15) | 0.00093 (10) | 0.00329 (10) | −0.00069 (10) |
| O1 | 0.0162 (4) | 0.0156 (4) | 0.0123 (4) | 0.0025 (3) | 0.0005 (3) | −0.0018 (3) |
| C11 | 0.0177 (6) | 0.0237 (6) | 0.0160 (6) | 0.0053 (5) | −0.0016 (4) | 0.0004 (5) |
| C21 | 0.0183 (6) | 0.0372 (8) | 0.0216 (7) | −0.0017 (6) | −0.0022 (5) | 0.0035 (6) |
| C31 | 0.0283 (7) | 0.0317 (8) | 0.0293 (8) | 0.0040 (6) | −0.0019 (6) | 0.0135 (6) |
| Si1 | 0.02069 (17) | 0.01375 (16) | 0.01521 (17) | 0.00146 (12) | 0.00709 (13) | −0.00205 (12) |
| C1 | 0.0300 (7) | 0.0182 (6) | 0.0211 (7) | −0.0017 (5) | 0.0072 (5) | −0.0070 (5) |
| C2 | 0.0360 (8) | 0.0242 (7) | 0.0199 (7) | 0.0012 (6) | 0.0135 (6) | 0.0019 (5) |
| C3 | 0.0258 (7) | 0.0239 (7) | 0.0290 (8) | 0.0058 (5) | 0.0105 (5) | −0.0047 (6) |
| Si2 | 0.01396 (16) | 0.01862 (17) | 0.01629 (18) | −0.00085 (12) | 0.00281 (12) | 0.00010 (13) |
| C4 | 0.0189 (6) | 0.0226 (6) | 0.0267 (7) | −0.0031 (5) | 0.0058 (5) | 0.0002 (5) |
| C5 | 0.0212 (6) | 0.0270 (7) | 0.0265 (7) | 0.0028 (5) | 0.0016 (5) | 0.0071 (6) |
| C6 | 0.0183 (6) | 0.0330 (7) | 0.0174 (6) | −0.0049 (5) | 0.0014 (5) | −0.0052 (5) |
| N1 | 0.0144 (4) | 0.0143 (4) | 0.0129 (5) | 0.0012 (4) | 0.0031 (3) | −0.0009 (4) |
| N2 | 0.0188 (5) | 0.0115 (4) | 0.0124 (5) | −0.0008 (4) | 0.0058 (4) | −0.0021 (4) |
| C7 | 0.0165 (5) | 0.0133 (5) | 0.0133 (5) | −0.0009 (4) | 0.0035 (4) | 0.0011 (4) |
| C8 | 0.0245 (6) | 0.0135 (5) | 0.0181 (6) | −0.0029 (4) | 0.0044 (5) | −0.0013 (5) |
| C9 | 0.0172 (6) | 0.0255 (7) | 0.0267 (7) | −0.0016 (5) | 0.0065 (5) | −0.0007 (5) |
| C10 | 0.0275 (7) | 0.0161 (6) | 0.0158 (6) | 0.0000 (5) | −0.0010 (5) | 0.0023 (5) |
Geometric parameters (Å, º)
| S—P | 1.9578 (6) | Si2—N1 | 1.7954 (12) |
| P—O1 | 1.5959 (10) | Si2—C6 | 1.8687 (14) |
| P—N2 | 1.6356 (11) | Si2—C4 | 1.8694 (14) |
| P—N1 | 1.6635 (11) | Si2—C5 | 1.8713 (14) |
| O1—C11 | 1.4700 (15) | C4—H4A | 0.9800 |
| C11—C31 | 1.513 (2) | C4—H4B | 0.9800 |
| C11—C21 | 1.515 (2) | C4—H4C | 0.9800 |
| C11—H11 | 1.0000 | C5—H5A | 0.9800 |
| C21—H21A | 0.9800 | C5—H5B | 0.9800 |
| C21—H21B | 0.9800 | C5—H5C | 0.9800 |
| C21—H21C | 0.9800 | C6—H6A | 0.9800 |
| C31—H31A | 0.9800 | C6—H6B | 0.9800 |
| C31—H31B | 0.9800 | C6—H6C | 0.9800 |
| C31—H31C | 0.9800 | N2—C7 | 1.4898 (15) |
| Si1—N1 | 1.7907 (11) | N2—H2 | 0.848 (16) |
| Si1—C2 | 1.8628 (14) | C7—C8 | 1.5228 (17) |
| Si1—C1 | 1.8637 (14) | C7—C9 | 1.5319 (17) |
| Si1—C3 | 1.8653 (14) | C7—C10 | 1.5320 (18) |
| C1—H1A | 0.9800 | C8—H8A | 0.9800 |
| C1—H1B | 0.9800 | C8—H8B | 0.9800 |
| C1—H1C | 0.9800 | C8—H8C | 0.9800 |
| C2—H2A | 0.9800 | C9—H9A | 0.9800 |
| C2—H2B | 0.9800 | C9—H9B | 0.9800 |
| C2—H2C | 0.9800 | C9—H9C | 0.9800 |
| C3—H3A | 0.9800 | C10—H10A | 0.9800 |
| C3—H3B | 0.9800 | C10—H10B | 0.9800 |
| C3—H3C | 0.9800 | C10—H10C | 0.9800 |
| O1—P—N2 | 107.98 (6) | N1—Si2—C5 | 109.36 (6) |
| O1—P—N1 | 99.94 (5) | C6—Si2—C5 | 105.15 (7) |
| N2—P—N1 | 111.55 (6) | C4—Si2—C5 | 113.76 (7) |
| O1—P—S | 112.66 (4) | Si2—C4—H4A | 109.5 |
| N2—P—S | 108.90 (4) | Si2—C4—H4B | 109.5 |
| N1—P—S | 115.40 (4) | H4A—C4—H4B | 109.5 |
| C11—O1—P | 119.84 (8) | Si2—C4—H4C | 109.5 |
| O1—C11—C31 | 108.69 (11) | H4A—C4—H4C | 109.5 |
| O1—C11—C21 | 107.59 (11) | H4B—C4—H4C | 109.5 |
| C31—C11—C21 | 112.01 (12) | Si2—C5—H5A | 109.5 |
| O1—C11—H11 | 109.5 | Si2—C5—H5B | 109.5 |
| C31—C11—H11 | 109.5 | H5A—C5—H5B | 109.5 |
| C21—C11—H11 | 109.5 | Si2—C5—H5C | 109.5 |
| C11—C21—H21A | 109.5 | H5A—C5—H5C | 109.5 |
| C11—C21—H21B | 109.5 | H5B—C5—H5C | 109.5 |
| H21A—C21—H21B | 109.5 | Si2—C6—H6A | 109.5 |
| C11—C21—H21C | 109.5 | Si2—C6—H6B | 109.5 |
| H21A—C21—H21C | 109.5 | H6A—C6—H6B | 109.5 |
| H21B—C21—H21C | 109.5 | Si2—C6—H6C | 109.5 |
| C11—C31—H31A | 109.5 | H6A—C6—H6C | 109.5 |
| C11—C31—H31B | 109.5 | H6B—C6—H6C | 109.5 |
| H31A—C31—H31B | 109.5 | P—N1—Si1 | 119.80 (6) |
| C11—C31—H31C | 109.5 | P—N1—Si2 | 115.56 (6) |
| H31A—C31—H31C | 109.5 | Si1—N1—Si2 | 119.70 (6) |
| H31B—C31—H31C | 109.5 | C7—N2—P | 133.08 (8) |
| N1—Si1—C2 | 110.35 (6) | C7—N2—H2 | 114.3 (11) |
| N1—Si1—C1 | 113.62 (6) | P—N2—H2 | 112.5 (11) |
| C2—Si1—C1 | 110.52 (7) | N2—C7—C8 | 111.56 (10) |
| N1—Si1—C3 | 110.20 (6) | N2—C7—C9 | 107.63 (10) |
| C2—Si1—C3 | 107.50 (7) | C8—C7—C9 | 109.89 (11) |
| C1—Si1—C3 | 104.33 (7) | N2—C7—C10 | 108.97 (10) |
| Si1—C1—H1A | 109.5 | C8—C7—C10 | 109.54 (10) |
| Si1—C1—H1B | 109.5 | C9—C7—C10 | 109.20 (11) |
| H1A—C1—H1B | 109.5 | C7—C8—H8A | 109.5 |
| Si1—C1—H1C | 109.5 | C7—C8—H8B | 109.5 |
| H1A—C1—H1C | 109.5 | H8A—C8—H8B | 109.5 |
| H1B—C1—H1C | 109.5 | C7—C8—H8C | 109.5 |
| Si1—C2—H2A | 109.5 | H8A—C8—H8C | 109.5 |
| Si1—C2—H2B | 109.5 | H8B—C8—H8C | 109.5 |
| H2A—C2—H2B | 109.5 | C7—C9—H9A | 109.5 |
| Si1—C2—H2C | 109.5 | C7—C9—H9B | 109.5 |
| H2A—C2—H2C | 109.5 | H9A—C9—H9B | 109.5 |
| H2B—C2—H2C | 109.5 | C7—C9—H9C | 109.5 |
| Si1—C3—H3A | 109.5 | H9A—C9—H9C | 109.5 |
| Si1—C3—H3B | 109.5 | H9B—C9—H9C | 109.5 |
| H3A—C3—H3B | 109.5 | C7—C10—H10A | 109.5 |
| Si1—C3—H3C | 109.5 | C7—C10—H10B | 109.5 |
| H3A—C3—H3C | 109.5 | H10A—C10—H10B | 109.5 |
| H3B—C3—H3C | 109.5 | C7—C10—H10C | 109.5 |
| N1—Si2—C6 | 114.73 (6) | H10A—C10—H10C | 109.5 |
| N1—Si2—C4 | 108.34 (6) | H10B—C10—H10C | 109.5 |
| C6—Si2—C4 | 105.60 (7) |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N2—H2···Si | 0.848 (16) | 2.631 (16) | 3.4326 (13) | 158.2 (14) |
Symmetry code: (i) −x, −y+1, −z+1.
Footnotes
Supporting information for this paper is available from the IUCr electronic archives (Reference: XU5831).
References
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Goldys, A. M. & Dixon, D. J. (2014). Macromolecules, 47, 1277–1284.
- Kawalec, M., Coulembier, O., Gerbaux, P., Sobota, M., De Winter, J., Dubois, P., Kowalczuk, M. & Kurcok, P. (2012). React. Funct. Polym. 72, 509–520.
- Kovalenko, O. O., Boldog, I., Kinzhybalo, V., Lis, T. & Brusilovets, A. I. (2011a). Dalton Trans. 40, 711–717. [DOI] [PubMed]
- Kovalenko, O. O., Brusylovets, O. A., Kinzhybalo, V., Lis, T. & Brusilovets, A. I. (2011b). Dalton Trans. 40, 4814–4817. [DOI] [PubMed]
- Kovalenko, O. O., Kinzhybalo, V., Lis, T. & Brusilovets, A. I. (2011c). Phosphorus Sulfur Silicon Relat. Elem. 186, 814–821.
- Kovalenko, O. O., Kinzhybalo, V., Lis, T., Khavryuchenko, O. V., Rusanov, E. B. & Brusilovets, A. I. (2012). Dalton Trans. 41, 5132–5136. [DOI] [PubMed]
- Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Wrocław, Poland.
- Rusanov, E. B., Brusilovets, A. I. & Chernega, A. N. (1992). Zh. Obshch. Khim. (Russ. J. Gen. Chem.), 62, 2551–2558.
- Samuel, C., Chalamet, Y., Boisson, F., Majesté, J.-C., Becquart, F. & Fleury, E. (2014). J. Polym. Sci. Part A Polym. Chem. 52, 493–503.
- Scherer, O. J. & Kuhn, N. (1974). J. Organomet. Chem. 82, C3–C6.
- Scherer, O. J., Kulbach, N.-T. & Glässel, W. (1978). Z. Naturforsch. Teil B, 33, 652–656.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
- Zhang, L., Nederberg, F., Pratt, R. C., Waymouth, R. M., Hedrick, J. L. & Wade, C. G. (2007). Macromolecules, 40, 4154–4158.
- Zhao, J., Pahovnik, D., Gnanou, Y. & Hadjichristidis, N. (2014a). Macromolecules, 47, 1693–1698.
- Zhao, J., Pahovnik, D., Gnanou, Y. & Hadjichristidis, N. (2014b). Polym. Chem. 5, 3750–3753.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S205698901402622X/xu5831sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901402622X/xu5831Isup2.hkl
Supporting information file. DOI: 10.1107/S205698901402622X/xu5831Isup3.cml
ORTEP . DOI: 10.1107/S205698901402622X/xu5831fig1.tif
An ORTEP view of the molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.
CCDC reference: 1036750
Additional supporting information: crystallographic information; 3D view; checkCIF report
