Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 1;71(Pt 1):o37–o38. doi: 10.1107/S205698901402622X

Crystal structure of O-isopropyl [bis­(tri­methyl­sil­yl)amino](tert-butyl­amino)­phosphino­thio­ate

Oleksandr O Kovalenko a,*, Vasyl Kinzhybalo b, Oleksii A Brusylovets a, Tadeusz Lis c
PMCID: PMC4331855  PMID: 25705495

Abstract

[Bis(tri­methyl­sil­yl)amino](tert-butyl­imino)­thio­phospho­rane reacts in benzene with isopropyl alcohol via 1,2-addition of an iPrO–H bond across the P=N bond, resulting in the title compound, C13H35N2OPSSi2. In the mol­ecule, the P atom possesses a distorted tetra­hedral environment involving two N atoms from (Me3Si)2N– and tBuNH– groups, one O atom from an iPrO group and one S atom, therefore the mol­ecule has a stereocenter on the P atom but crystal symmetry leads to a racemate. In the crystal, a pair of enanti­omers form a centrosymmetric dimer via a pair of N—H⋯S hydrogen bonds.

Keywords: crystal structure, (tri­methyl­sil­yl)amino, phosphino­thio­ate, N—H⋯S hydrogen bonding

Related literature  

For details of the synthesis of [bis­(tri­methyl­sil­yl)amino](tert-butyl­imino)­thio­phospho­rane, see: Scherer & Kuhn (1974). For its chemical reactivity, see: Kovalenko et al. (2011a ,b ,c , 2012); Rusanov et al. (1992); Scherer et al. (1978). For its applications in catalysis, see: Zhao et al. (2014a ,b ); Goldys & Dixon (2014); Samuel et al. (2014); Kawalec et al. (2012); Zhang et al. (2007).graphic file with name e-71-00o37-scheme1.jpg

Experimental  

Crystal data  

  • C13H35N2OPSSi2

  • M r = 354.64

  • Monoclinic, Inline graphic

  • a = 9.942 (3) Å

  • b = 11.907 (3) Å

  • c = 17.726 (5) Å

  • β = 100.52 (3)°

  • V = 2063.1 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.20 mm

Data collection  

  • Oxford Xcalibur PX κ-geometry diffractometer with a CCD area detector

  • 36939 measured reflections

  • 7436 independent reflections

  • 5938 reflections with I > 2σ(I)

  • R int = 0.033

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.115

  • S = 1.08

  • 7436 reflections

  • 184 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.84 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell refinement: CrysAlis RED (Oxford Diffraction, 2003); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S205698901402622X/xu5831sup1.cif

e-71-00o37-sup1.cif (1.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901402622X/xu5831Isup2.hkl

e-71-00o37-Isup2.hkl (407.4KB, hkl)

Supporting information file. DOI: 10.1107/S205698901402622X/xu5831Isup3.cml

ORTEP . DOI: 10.1107/S205698901402622X/xu5831fig1.tif

An ORTEP view of the mol­ecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.

CCDC reference: 1036750

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N2H2Si 0.848(16) 2.631(16) 3.4326(13) 158.2(14)

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

S1. Comments

[Bis(tri­methyl­silyl)amino](tert-butyl­imino)­thio­phospho­rane was first synthesized by Scherer and Kuhn in 1974, see: Scherer & Kuhn (1974), and later some general chemical reactivity of this compound was studied, see: Scherer et al. (1978). Based on these early results, penta­valent tricoordinated σ3λ5-phospho­ranes recommended themselves as promising ligands for the obtaining of new organometallic metallacycles with specific features. Recently we have reported and characterized series of transition metal metallacycles, containing phospho­rus atom in cyclic moiety, see: Kovalenko et al. (2011a, 2011b, 2011c, 2012); Rusanov et al. (1992). In current communication we reported the reactivity of [bis­(tri­methyl­silyl)amino](tert-butyl­imino)-thio­phospho­rane with iso­propyl alcohol. The reaction proceeds through a 1,2-addition of iPrO–H bond across the P=N bond, resulting in the title compound. Resulted product was characterized by single X-ray analysis and 1H, 13C and 31P NMR spectroscopy. In these latter days it was discovered that low-coordinate phospho­rus compounds are catalytically active and might be efficiently applied in catalysis, see: Zhao et al. (2014a, 2014b); Goldys & Dixon (2014); Samuel et al. (2014); Kawalec et al. (2012); Zhang et al. (2007).

Central P atom posesses distorted tetra­hedral environment of four different substituents: (Me3Si)2N-, tBuNH- and iPrO- groups and S atom, resulting in stereocenter on phospho­rus. R and S isomers form centrosymmetric dimers due to the formation of a pair of N—H···S type hydrogen bonds. Geometrical parameters of O-iso­propyl [bis­(tri­methyl­silyl)amino](tert-butyl­amino)­phosphino­thio­ate are consistent with the values reported earlier (Rusanov et al., 1992; Kovalenko et al., 2011a, 2011b) for the compounds containing analogous phosphino­thio­ates, but deprotonated and coordinated to metal centers.

S2. Experimental

All procedures were carried out under a dry argon atmosphere using standard Schlenk and glovebox techniques. Benzene and hexane were distilled from sodium-potassium alloy directly before use. Iso­propyl alcohol was dried and distilled from magnesium and stored over 4 Å molecular sieves prior to use.

In a Schlenk flask, (0.884 g, 3.0 mmol) of [bis­(tri­methyl­silyl)amino](tert-butyl­imino)­thio­phospho­rane was dissolved in 3 ml of benzene and the solution of iso­propyl alcohol (0.23 ml, 3.0 mmol) in 1 ml of benzene was added dropwise. The mixture was stirred for 1.5 h at room temperature, thereafter solvent was removed in vacuo producing an almost colorless tar. The residue was dissolved in 1 ml of hexane and kept at 252 K in order to induce further crystallization. Yield: 0.76 g, 71% of colorless crystals. 1H NMR (400 MHz, C6D6, 298K): δ 5.00 (m, 1H), 2.45 (d, 2JP—H=10.3 Hz, 1H), 1.27 (d, 3JH—H=6.0 Hz, 3H), 1.19 (d, 3JH—H=6.0 Hz, 3H), 1.15 (s, 9H), 0.47 (18H); 13C{1H} NMR (100 MHz, C6D6, 298K): δ 71.52 (d, 2JP—C=4.6 Hz), 52.72 (d, 2JP—C=4.6 Hz), 31.58, 31.53, 23.98, 23.92, 5.26 (d, 3JP—C=2.3 Hz); 31P{1H} NMR (162 MHz, C6D6, 298K): δ 63.24 (dd, 2JP—H=10.3 Hz, 3JP—H=10.3 Hz).

S3. Refinement

Positions of hydrogen atoms bonded to carbon were generated in idealized geometries using a riding model with Uiso(H) = 1.5Ueq(C) or 1.2Ueq(C). The fractional coordinates of the H atom attached to N2 were identified from a difference Fourier map and refined freely with isotropic thermal displacement parameter.

Figures

Fig. 1.

Fig. 1.

An ORTEP view of the molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.

Crystal data

C13H35N2OPSSi2 F(000) = 776
Mr = 354.64 Dx = 1.142 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 9.942 (3) Å Cell parameters from 25646 reflections
b = 11.907 (3) Å θ = 4–32.6°
c = 17.726 (5) Å µ = 0.35 mm1
β = 100.52 (3)° T = 100 K
V = 2063.1 (10) Å3 Block, colourless
Z = 4 0.30 × 0.20 × 0.20 mm

Data collection

Oxford Xcalibur PX κ-geometry diffractometer with a CCD area detector 5938 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.033
Graphite monochromator θmax = 32.6°, θmin = 4.7°
ω and φ scans h = −15→14
36939 measured reflections k = −17→18
7436 independent reflections l = −26→26

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115 H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.071P)2] where P = (Fo2 + 2Fc2)/3
7436 reflections (Δ/σ)max = 0.019
184 parameters Δρmax = 0.84 e Å3
0 restraints Δρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S 0.06612 (3) 0.50611 (2) 0.38496 (2) 0.01778 (8)
P 0.03058 (3) 0.34478 (2) 0.38973 (2) 0.01212 (8)
O1 −0.06932 (9) 0.29955 (7) 0.31509 (5) 0.01497 (17)
C11 −0.19850 (13) 0.35845 (11) 0.28645 (7) 0.0197 (2)
H11 −0.2199 0.4103 0.3270 0.024*
C21 −0.30994 (14) 0.27054 (13) 0.26853 (8) 0.0265 (3)
H21A −0.3976 0.3074 0.2492 0.040*
H21B −0.2880 0.2189 0.2295 0.040*
H21C −0.3163 0.2285 0.3153 0.040*
C31 −0.18259 (16) 0.42557 (13) 0.21616 (9) 0.0307 (3)
H31A −0.2682 0.4653 0.1965 0.046*
H31B −0.1084 0.4802 0.2299 0.046*
H31C −0.1609 0.3747 0.1766 0.046*
Si1 0.18608 (4) 0.19371 (3) 0.30180 (2) 0.01607 (8)
C1 0.05411 (14) 0.08448 (11) 0.26893 (8) 0.0228 (3)
H1A 0.0714 0.0505 0.2212 0.034*
H1B 0.0584 0.0263 0.3084 0.034*
H1C −0.0368 0.1191 0.2598 0.034*
C2 0.19037 (16) 0.29925 (12) 0.22471 (8) 0.0257 (3)
H2A 0.2019 0.2607 0.1774 0.038*
H2B 0.1044 0.3417 0.2155 0.038*
H2C 0.2671 0.3509 0.2406 0.038*
C3 0.35141 (14) 0.11555 (12) 0.31640 (9) 0.0255 (3)
H3A 0.3617 0.0785 0.2684 0.038*
H3B 0.4272 0.1682 0.3319 0.038*
H3C 0.3521 0.0589 0.3566 0.038*
Si2 0.31243 (3) 0.29123 (3) 0.46123 (2) 0.01629 (8)
C4 0.43267 (13) 0.38055 (12) 0.41764 (8) 0.0225 (3)
H4A 0.5138 0.3973 0.4564 0.034*
H4B 0.4602 0.3403 0.3747 0.034*
H4C 0.3870 0.4508 0.3990 0.034*
C5 0.38927 (14) 0.15588 (12) 0.50201 (9) 0.0253 (3)
H5A 0.4697 0.1716 0.5415 0.038*
H5B 0.3217 0.1142 0.5248 0.038*
H5C 0.4166 0.1109 0.4610 0.038*
C6 0.27586 (13) 0.37228 (13) 0.54548 (8) 0.0232 (3)
H6A 0.3612 0.3845 0.5820 0.035*
H6B 0.2353 0.4449 0.5281 0.035*
H6C 0.2118 0.3299 0.5705 0.035*
N1 0.16513 (10) 0.26205 (8) 0.38890 (6) 0.01379 (19)
N2 −0.04109 (11) 0.31950 (8) 0.46402 (6) 0.01388 (19)
H2 −0.0419 (15) 0.3767 (13) 0.4924 (9) 0.017*
C7 −0.09601 (12) 0.21560 (10) 0.49410 (7) 0.0143 (2)
C8 −0.08932 (13) 0.11580 (10) 0.44119 (7) 0.0186 (2)
H8A −0.1261 0.0490 0.4626 0.028*
H8B −0.1436 0.1320 0.3904 0.028*
H8C 0.0060 0.1021 0.4365 0.028*
C9 −0.24488 (13) 0.23858 (12) 0.50102 (8) 0.0228 (3)
H9A −0.2838 0.1715 0.5207 0.034*
H9B −0.2482 0.3014 0.5363 0.034*
H9C −0.2978 0.2576 0.4504 0.034*
C10 −0.01281 (14) 0.18979 (11) 0.57379 (7) 0.0204 (3)
H10A −0.0483 0.1215 0.5940 0.031*
H10B 0.0834 0.1786 0.5700 0.031*
H10C −0.0203 0.2528 0.6084 0.031*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S 0.02695 (17) 0.01109 (14) 0.01685 (16) −0.00040 (11) 0.00810 (12) −0.00059 (10)
P 0.01485 (14) 0.01073 (14) 0.01114 (15) 0.00093 (10) 0.00329 (10) −0.00069 (10)
O1 0.0162 (4) 0.0156 (4) 0.0123 (4) 0.0025 (3) 0.0005 (3) −0.0018 (3)
C11 0.0177 (6) 0.0237 (6) 0.0160 (6) 0.0053 (5) −0.0016 (4) 0.0004 (5)
C21 0.0183 (6) 0.0372 (8) 0.0216 (7) −0.0017 (6) −0.0022 (5) 0.0035 (6)
C31 0.0283 (7) 0.0317 (8) 0.0293 (8) 0.0040 (6) −0.0019 (6) 0.0135 (6)
Si1 0.02069 (17) 0.01375 (16) 0.01521 (17) 0.00146 (12) 0.00709 (13) −0.00205 (12)
C1 0.0300 (7) 0.0182 (6) 0.0211 (7) −0.0017 (5) 0.0072 (5) −0.0070 (5)
C2 0.0360 (8) 0.0242 (7) 0.0199 (7) 0.0012 (6) 0.0135 (6) 0.0019 (5)
C3 0.0258 (7) 0.0239 (7) 0.0290 (8) 0.0058 (5) 0.0105 (5) −0.0047 (6)
Si2 0.01396 (16) 0.01862 (17) 0.01629 (18) −0.00085 (12) 0.00281 (12) 0.00010 (13)
C4 0.0189 (6) 0.0226 (6) 0.0267 (7) −0.0031 (5) 0.0058 (5) 0.0002 (5)
C5 0.0212 (6) 0.0270 (7) 0.0265 (7) 0.0028 (5) 0.0016 (5) 0.0071 (6)
C6 0.0183 (6) 0.0330 (7) 0.0174 (6) −0.0049 (5) 0.0014 (5) −0.0052 (5)
N1 0.0144 (4) 0.0143 (4) 0.0129 (5) 0.0012 (4) 0.0031 (3) −0.0009 (4)
N2 0.0188 (5) 0.0115 (4) 0.0124 (5) −0.0008 (4) 0.0058 (4) −0.0021 (4)
C7 0.0165 (5) 0.0133 (5) 0.0133 (5) −0.0009 (4) 0.0035 (4) 0.0011 (4)
C8 0.0245 (6) 0.0135 (5) 0.0181 (6) −0.0029 (4) 0.0044 (5) −0.0013 (5)
C9 0.0172 (6) 0.0255 (7) 0.0267 (7) −0.0016 (5) 0.0065 (5) −0.0007 (5)
C10 0.0275 (7) 0.0161 (6) 0.0158 (6) 0.0000 (5) −0.0010 (5) 0.0023 (5)

Geometric parameters (Å, º)

S—P 1.9578 (6) Si2—N1 1.7954 (12)
P—O1 1.5959 (10) Si2—C6 1.8687 (14)
P—N2 1.6356 (11) Si2—C4 1.8694 (14)
P—N1 1.6635 (11) Si2—C5 1.8713 (14)
O1—C11 1.4700 (15) C4—H4A 0.9800
C11—C31 1.513 (2) C4—H4B 0.9800
C11—C21 1.515 (2) C4—H4C 0.9800
C11—H11 1.0000 C5—H5A 0.9800
C21—H21A 0.9800 C5—H5B 0.9800
C21—H21B 0.9800 C5—H5C 0.9800
C21—H21C 0.9800 C6—H6A 0.9800
C31—H31A 0.9800 C6—H6B 0.9800
C31—H31B 0.9800 C6—H6C 0.9800
C31—H31C 0.9800 N2—C7 1.4898 (15)
Si1—N1 1.7907 (11) N2—H2 0.848 (16)
Si1—C2 1.8628 (14) C7—C8 1.5228 (17)
Si1—C1 1.8637 (14) C7—C9 1.5319 (17)
Si1—C3 1.8653 (14) C7—C10 1.5320 (18)
C1—H1A 0.9800 C8—H8A 0.9800
C1—H1B 0.9800 C8—H8B 0.9800
C1—H1C 0.9800 C8—H8C 0.9800
C2—H2A 0.9800 C9—H9A 0.9800
C2—H2B 0.9800 C9—H9B 0.9800
C2—H2C 0.9800 C9—H9C 0.9800
C3—H3A 0.9800 C10—H10A 0.9800
C3—H3B 0.9800 C10—H10B 0.9800
C3—H3C 0.9800 C10—H10C 0.9800
O1—P—N2 107.98 (6) N1—Si2—C5 109.36 (6)
O1—P—N1 99.94 (5) C6—Si2—C5 105.15 (7)
N2—P—N1 111.55 (6) C4—Si2—C5 113.76 (7)
O1—P—S 112.66 (4) Si2—C4—H4A 109.5
N2—P—S 108.90 (4) Si2—C4—H4B 109.5
N1—P—S 115.40 (4) H4A—C4—H4B 109.5
C11—O1—P 119.84 (8) Si2—C4—H4C 109.5
O1—C11—C31 108.69 (11) H4A—C4—H4C 109.5
O1—C11—C21 107.59 (11) H4B—C4—H4C 109.5
C31—C11—C21 112.01 (12) Si2—C5—H5A 109.5
O1—C11—H11 109.5 Si2—C5—H5B 109.5
C31—C11—H11 109.5 H5A—C5—H5B 109.5
C21—C11—H11 109.5 Si2—C5—H5C 109.5
C11—C21—H21A 109.5 H5A—C5—H5C 109.5
C11—C21—H21B 109.5 H5B—C5—H5C 109.5
H21A—C21—H21B 109.5 Si2—C6—H6A 109.5
C11—C21—H21C 109.5 Si2—C6—H6B 109.5
H21A—C21—H21C 109.5 H6A—C6—H6B 109.5
H21B—C21—H21C 109.5 Si2—C6—H6C 109.5
C11—C31—H31A 109.5 H6A—C6—H6C 109.5
C11—C31—H31B 109.5 H6B—C6—H6C 109.5
H31A—C31—H31B 109.5 P—N1—Si1 119.80 (6)
C11—C31—H31C 109.5 P—N1—Si2 115.56 (6)
H31A—C31—H31C 109.5 Si1—N1—Si2 119.70 (6)
H31B—C31—H31C 109.5 C7—N2—P 133.08 (8)
N1—Si1—C2 110.35 (6) C7—N2—H2 114.3 (11)
N1—Si1—C1 113.62 (6) P—N2—H2 112.5 (11)
C2—Si1—C1 110.52 (7) N2—C7—C8 111.56 (10)
N1—Si1—C3 110.20 (6) N2—C7—C9 107.63 (10)
C2—Si1—C3 107.50 (7) C8—C7—C9 109.89 (11)
C1—Si1—C3 104.33 (7) N2—C7—C10 108.97 (10)
Si1—C1—H1A 109.5 C8—C7—C10 109.54 (10)
Si1—C1—H1B 109.5 C9—C7—C10 109.20 (11)
H1A—C1—H1B 109.5 C7—C8—H8A 109.5
Si1—C1—H1C 109.5 C7—C8—H8B 109.5
H1A—C1—H1C 109.5 H8A—C8—H8B 109.5
H1B—C1—H1C 109.5 C7—C8—H8C 109.5
Si1—C2—H2A 109.5 H8A—C8—H8C 109.5
Si1—C2—H2B 109.5 H8B—C8—H8C 109.5
H2A—C2—H2B 109.5 C7—C9—H9A 109.5
Si1—C2—H2C 109.5 C7—C9—H9B 109.5
H2A—C2—H2C 109.5 H9A—C9—H9B 109.5
H2B—C2—H2C 109.5 C7—C9—H9C 109.5
Si1—C3—H3A 109.5 H9A—C9—H9C 109.5
Si1—C3—H3B 109.5 H9B—C9—H9C 109.5
H3A—C3—H3B 109.5 C7—C10—H10A 109.5
Si1—C3—H3C 109.5 C7—C10—H10B 109.5
H3A—C3—H3C 109.5 H10A—C10—H10B 109.5
H3B—C3—H3C 109.5 C7—C10—H10C 109.5
N1—Si2—C6 114.73 (6) H10A—C10—H10C 109.5
N1—Si2—C4 108.34 (6) H10B—C10—H10C 109.5
C6—Si2—C4 105.60 (7)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2···Si 0.848 (16) 2.631 (16) 3.4326 (13) 158.2 (14)

Symmetry code: (i) −x, −y+1, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: XU5831).

References

  1. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  2. Goldys, A. M. & Dixon, D. J. (2014). Macromolecules, 47, 1277–1284.
  3. Kawalec, M., Coulembier, O., Gerbaux, P., Sobota, M., De Winter, J., Dubois, P., Kowalczuk, M. & Kurcok, P. (2012). React. Funct. Polym. 72, 509–520.
  4. Kovalenko, O. O., Boldog, I., Kinzhybalo, V., Lis, T. & Brusilovets, A. I. (2011a). Dalton Trans. 40, 711–717. [DOI] [PubMed]
  5. Kovalenko, O. O., Brusylovets, O. A., Kinzhybalo, V., Lis, T. & Brusilovets, A. I. (2011b). Dalton Trans. 40, 4814–4817. [DOI] [PubMed]
  6. Kovalenko, O. O., Kinzhybalo, V., Lis, T. & Brusilovets, A. I. (2011c). Phosphorus Sulfur Silicon Relat. Elem. 186, 814–821.
  7. Kovalenko, O. O., Kinzhybalo, V., Lis, T., Khavryuchenko, O. V., Rusanov, E. B. & Brusilovets, A. I. (2012). Dalton Trans. 41, 5132–5136. [DOI] [PubMed]
  8. Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Wrocław, Poland.
  9. Rusanov, E. B., Brusilovets, A. I. & Chernega, A. N. (1992). Zh. Obshch. Khim. (Russ. J. Gen. Chem.), 62, 2551–2558.
  10. Samuel, C., Chalamet, Y., Boisson, F., Majesté, J.-C., Becquart, F. & Fleury, E. (2014). J. Polym. Sci. Part A Polym. Chem. 52, 493–503.
  11. Scherer, O. J. & Kuhn, N. (1974). J. Organomet. Chem. 82, C3–C6.
  12. Scherer, O. J., Kulbach, N.-T. & Glässel, W. (1978). Z. Naturforsch. Teil B, 33, 652–656.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  15. Zhang, L., Nederberg, F., Pratt, R. C., Waymouth, R. M., Hedrick, J. L. & Wade, C. G. (2007). Macromolecules, 40, 4154–4158.
  16. Zhao, J., Pahovnik, D., Gnanou, Y. & Hadjichristidis, N. (2014a). Macromolecules, 47, 1693–1698.
  17. Zhao, J., Pahovnik, D., Gnanou, Y. & Hadjichristidis, N. (2014b). Polym. Chem. 5, 3750–3753.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S205698901402622X/xu5831sup1.cif

e-71-00o37-sup1.cif (1.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901402622X/xu5831Isup2.hkl

e-71-00o37-Isup2.hkl (407.4KB, hkl)

Supporting information file. DOI: 10.1107/S205698901402622X/xu5831Isup3.cml

ORTEP . DOI: 10.1107/S205698901402622X/xu5831fig1.tif

An ORTEP view of the mol­ecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.

CCDC reference: 1036750

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES