Abstract
The title complex, poly[dodeca-μ-cyanido-diiron(III)triplatinum(II)], [FeIII 2{PtII(CN)4}3], has a three-dimensional polymeric structure. It is built-up from square-planar [PtII(CN)4]2− anions (point group symmetry 2/m) bridging cationic [FeIIIPtII(CN)4]+ ∞ layers extending in the bc plane. The FeII atoms of the layers are located on inversion centres and exhibit an octahedral coordination sphere defined by six N atoms of cyanide ligands, while the PtII atoms are located on twofold rotation axes and are surrounded by four C atoms of the cyanide ligands in a square-planar coordination. The geometrical preferences of the two cations for octahedral and square-planar coordination, respectively, lead to a corrugated organisation of the layers. The distance between neighbouring [FeIIIPtII(CN)4]+ ∞ layers corresponds to the length a/2 = 8.0070 (3) Å, and the separation between two neighbouring PtII atoms of the bridging [PtII(CN)4]2− groups corresponds to the length of the c axis [7.5720 (2) Å]. The structure is porous with accessible voids of 390 Å3 per unit cell.
Keywords: crystal structure, polycyanidometalate, spin-crossover
Related literature
Coordination compounds have interesting properties in catalysis (Kanderal et al., 2005 ▸; Penkova et al., 2009 ▸) or as photoactive materials (Yan et al., 2012 ▸). Magnetically active polycyanidometallate network complexes of FeII [FeII L 2{M I(CN)2}2] or [FeII L 2{M II(CN)4}] (M I = Ag, Au; M II = Ni, Pd, Pt; L = N-heterocyclic ligand) have been studied because they show versatile polymeric structures (Piñeiro-López et al. 2014 ▸; Seredyuk et al., 2007 ▸, 2009 ▸), spin transition (Muñoz & Real, 2013 ▸) and functionalities such as sorption–desorption of organic and inorganic molecules (Muñoz & Real, 2013 ▸) or reversible chemosorption (Arcís-Castillo et al., 2013 ▸).
Experimental
Crystal data
[Fe2Pt3(CN)12]
M r = 1009.18
Monoclinic,
a = 16.0140 (5) Å
b = 13.8250 (5) Å
c = 7.5720 (2) Å
β = 102.946 (2)°
V = 1633.78 (9) Å3
Z = 2
Mo Kα radiation
μ = 13.68 mm−1
T = 293 K
0.04 × 0.04 × 0.02 mm
Data collection
Oxford Diffraction Gemini S Ultra diffractometer
Absorption correction: multi-scan (Blessing, 1995 ▸) T min = 0.611, T max = 0.772
3358 measured reflections
1909 independent reflections
1568 reflections with I > 2σ(I)
R int = 0.038
Refinement
R[F 2 > 2σ(F 2)] = 0.038
wR(F 2) = 0.106
S = 0.97
1909 reflections
71 parameters
Δρmax = 1.25 e Å−3
Δρmin = −1.33 e Å−3
Data collection: COLLECT (Nonius, 1999 ▸); cell refinement: SCALEPACK (Otwinowski & Minor, 1997 ▸); data reduction: DENZO (Otwinowski & Minor, 1997 ▸) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▸); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▸); molecular graphics: DIAMOND (Brandenburg, 1999 ▸); software used to prepare material for publication: WinGX (Farrugia, 2012 ▸).
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989014026188/wm5094sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014026188/wm5094Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989014026188/wm5094Isup3.cdx
x y z x y z x y z . DOI: 10.1107/S2056989014026188/wm5094fig1.tif
Displacement ellipsoid plot (30% probability level) of the principal building units of the structure of the title compound. [Symmetry codes: (i) + x,
+ y, 1 + z; (ii) 0.5 – x,
+ y, 1 – z, (iii) x, 1 – y, 1 + z.]
c 6 4 . DOI: 10.1107/S2056989014026188/wm5094fig2.tif
A fragment of three-dimentional coordination polymer of the title compound in a perspective view along c. Polyhedra correspond to FeN6 and PtC4 chromophores.
CCDC reference: 1036669
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
This study was supported by the Spanish Ministerio de Economía y Competitividad (MINECO) and FEDER funds (CTQ2013–46275-P) and Generalitat Valenciana (PROMETEO/2012/049). MS thanks the EU for a Marie Curie fellowship (IIF-253254).
supplementary crystallographic information
S1. Synthesis and crystallization
Single crystals of the title compound were grown using a slow diffusion technique. During the reaction time a side product had formed serendipitously due to oxidation of the initial FeII salt. One side of a multi-arm shaped vessel contained (NH4)2Fe(SO4)2·6H2O (20 mg, 51 mmol) dissolved in water (0.5 mL). The second arm contained K2[Pt(CN)4]·3H2O (22 mg, 51 mmol) in water (0.5 ml). The vessel was filled with a water/methanol (1:1) solution. Square shaped orange crystals suitable for single crystal X-ray analysis were obtained after several weeks.
S2. Refinement
The highest and lowest remaining electron density are located 3.66 and 0.83 Å, respectively, from the Pt atom. The highest electron densities are connected with positions in the voids of the framework. However, modelling of the electron density e.g. under consideration of disordered (partially occupied) water molecules lead to implausible models.
Figures
Fig. 1.
Displacement ellipsoid plot (30% probability level) of the principal building units of the structure of the title compound. [Symmetry codes: (i) 1/2 + x, 1/2 + y, 1 + z; (ii) 0.5 – x, 1/2 + y, 1 – z, (iii) x, 1 – y, 1 + z.]
Fig. 2.
A fragment of three-dimentional coordination polymer of the title compound in a perspective view along c. Polyhedra correspond to FeN6 and PtC4 chromophores.
Crystal data
[Fe2Pt3(CN)12] | F(000) = 884 |
Mr = 1009.18 | Dx = 2.051 Mg m−3 |
Monoclinic, C2/m | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2y | Cell parameters from 200 reflections |
a = 16.0140 (5) Å | θ = 12–20° |
b = 13.8250 (5) Å | µ = 13.68 mm−1 |
c = 7.5720 (2) Å | T = 293 K |
β = 102.946 (2)° | Prismatic, orange |
V = 1633.78 (9) Å3 | 0.04 × 0.04 × 0.02 mm |
Z = 2 |
Data collection
Oxford Diffraction Gemini S Ultra diffractometer | 1909 independent reflections |
Radiation source: fine-focus sealed tube | 1568 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.038 |
ω scans | θmax = 27.5°, θmin = 3.0° |
Absorption correction: multi-scan (Blessing, 1995) | h = −20→20 |
Tmin = 0.611, Tmax = 0.772 | k = −17→16 |
3358 measured reflections | l = −9→9 |
Refinement
Refinement on F2 | 0 constraints |
Least-squares matrix: full | Primary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.038 | Secondary atom site location: difference Fourier map |
wR(F2) = 0.106 | w = 1/[σ2(Fo2) + (0.0615P)2 + 15.455P] where P = (Fo2 + 2Fc2)/3 |
S = 0.97 | (Δ/σ)max < 0.001 |
1909 reflections | Δρmax = 1.25 e Å−3 |
71 parameters | Δρmin = −1.33 e Å−3 |
0 restraints |
Special details
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x | y | z | Uiso*/Ueq | ||
Pt1 | 0.0000 | 0.0000 | 0.0000 | 0.02376 (17) | |
Pt2 | 0.19452 (3) | 0.5000 | 0.47749 (5) | 0.02524 (16) | |
Fe | 0.2500 | 0.2500 | 0.0000 | 0.0215 (3) | |
N1 | 0.1335 (5) | 0.1622 (5) | −0.0284 (10) | 0.0368 (17) | |
N2 | 0.2081 (6) | 0.3449 (5) | 0.1843 (10) | 0.0400 (18) | |
N3 | 0.3039 (6) | 0.1577 (5) | 0.2273 (10) | 0.0385 (17) | |
C1 | 0.0859 (5) | 0.1023 (6) | −0.0190 (12) | 0.0310 (17) | |
C2 | 0.2001 (6) | 0.4002 (6) | 0.2915 (11) | 0.0335 (19) | |
C3 | 0.3072 (6) | 0.1012 (6) | 0.3373 (10) | 0.0312 (18) |
Atomic displacement parameters (Å2)
U11 | U22 | U33 | U12 | U13 | U23 | |
Pt1 | 0.0208 (3) | 0.0167 (3) | 0.0343 (3) | 0.000 | 0.0073 (2) | 0.000 |
Pt2 | 0.0389 (3) | 0.0182 (2) | 0.0195 (2) | 0.000 | 0.00824 (18) | 0.000 |
Fe | 0.0294 (8) | 0.0165 (7) | 0.0199 (7) | −0.0040 (6) | 0.0083 (6) | −0.0004 (5) |
N1 | 0.041 (4) | 0.026 (4) | 0.042 (4) | −0.009 (3) | 0.008 (4) | −0.002 (3) |
N2 | 0.056 (5) | 0.030 (4) | 0.038 (4) | −0.004 (4) | 0.017 (4) | −0.006 (3) |
N3 | 0.053 (5) | 0.026 (4) | 0.037 (4) | 0.002 (4) | 0.011 (4) | 0.006 (3) |
C1 | 0.028 (4) | 0.023 (4) | 0.043 (4) | 0.000 (3) | 0.011 (4) | 0.004 (3) |
C2 | 0.050 (6) | 0.026 (4) | 0.026 (4) | 0.003 (4) | 0.012 (4) | −0.001 (3) |
C3 | 0.045 (5) | 0.021 (4) | 0.025 (4) | −0.001 (4) | 0.004 (4) | 0.000 (3) |
Geometric parameters (Å, º)
Pt1—C1 | 2.000 (8) | Fe—N2 | 2.130 (7) |
Pt1—C1i | 2.000 (8) | Fe—N3vii | 2.161 (7) |
Pt1—C1ii | 2.000 (8) | Fe—N3 | 2.161 (7) |
Pt1—C1iii | 2.000 (8) | Fe—N1vii | 2.195 (7) |
Pt2—C3iv | 1.986 (8) | Fe—N1 | 2.195 (7) |
Pt2—C3v | 1.986 (8) | N1—C1 | 1.139 (10) |
Pt2—C2 | 1.988 (8) | N2—C2 | 1.143 (11) |
Pt2—C2vi | 1.988 (8) | N3—C3 | 1.134 (10) |
Fe—N2vii | 2.130 (7) | C3—Pt2v | 1.986 (8) |
C1—Pt1—C1i | 90.0 (5) | N3vii—Fe—N3 | 180.0 (3) |
C1—Pt1—C1ii | 180.0 (6) | N2vii—Fe—N1vii | 91.1 (3) |
C1i—Pt1—C1ii | 90.0 (5) | N2—Fe—N1vii | 88.9 (3) |
C1—Pt1—C1iii | 90.0 (5) | N3vii—Fe—N1vii | 86.0 (3) |
C1i—Pt1—C1iii | 180.0 (6) | N3—Fe—N1vii | 94.0 (3) |
C1ii—Pt1—C1iii | 90.0 (5) | N2vii—Fe—N1 | 88.9 (3) |
C3iv—Pt2—C3v | 89.6 (4) | N2—Fe—N1 | 91.1 (3) |
C3iv—Pt2—C2 | 178.1 (4) | N3vii—Fe—N1 | 94.0 (3) |
C3v—Pt2—C2 | 91.2 (3) | N3—Fe—N1 | 86.0 (3) |
C3iv—Pt2—C2vi | 91.2 (3) | N1vii—Fe—N1 | 180.0 (2) |
C3v—Pt2—C2vi | 178.1 (4) | C1—N1—Fe | 164.2 (7) |
C2—Pt2—C2vi | 87.9 (5) | C2—N2—Fe | 168.3 (8) |
N2vii—Fe—N2 | 180.0 (5) | C3—N3—Fe | 159.4 (8) |
N2vii—Fe—N3vii | 88.3 (3) | N1—C1—Pt1 | 178.3 (7) |
N2—Fe—N3vii | 91.7 (3) | N2—C2—Pt2 | 175.9 (9) |
N2vii—Fe—N3 | 91.7 (3) | N3—C3—Pt2v | 176.4 (8) |
N2—Fe—N3 | 88.3 (3) |
Symmetry codes: (i) x, −y, z; (ii) −x, −y, −z; (iii) −x, y, −z; (iv) −x+1/2, y+1/2, −z+1; (v) −x+1/2, −y+1/2, −z+1; (vi) x, −y+1, z; (vii) −x+1/2, −y+1/2, −z.
Footnotes
Supporting information for this paper is available from the IUCr electronic archives (Reference: WM5094).
References
- Arcís-Castillo, Z., Muñoz-Lara, F. J., Muñoz, M. C., Aravena, D., Gaspar, A. B., Sánchez-Royo, J. F., Ruiz, E., Ohba, M., Matsuda, R., Kitagawa, S. & Real, J. A. (2013). Inorg. Chem. 52, 12777–12783. [DOI] [PubMed]
- Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
- Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Kanderal, O. M., Kozlowski, H., Dobosz, A., Swiatek-Kozlowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428–1437. [DOI] [PubMed]
- Muñoz, M. C. & Real, J. A. (2013). Spin-Crossover Materials, edited by M. A. Halcrow, pp. 121–146: London: John Wiley & Sons Ltd.
- Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Penkova, L. V., Maciąg, A., Rybak-Akimova, E. V., Haukka, M., Pavlenko, V. A., Iskenderov, T. S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2009). Inorg. Chem. 48, 6960–6971. [DOI] [PubMed]
- Piñeiro-López, L., Seredyuk, M., Muñoz, M. C. & Real, J. A. (2014). Chem. Commun. pp. 1833-1835. [DOI] [PubMed]
- Seredyuk, M., Gaspar, A. B., Ksenofontov, V., Verdaguer, M., Villain, F. & Gütlich, P. (2009). Inorg. Chem. 48, 6130–6141. [DOI] [PubMed]
- Seredyuk, M., Haukka, M., Fritsky, I. O., Kozłowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183–3194. [DOI] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Yan, B., Li, Y.-Y. & Qiao, X.-F. (2012). Microporous Mesoporous Mater. 158, 129–136.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989014026188/wm5094sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014026188/wm5094Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989014026188/wm5094Isup3.cdx
x y z x y z x y z . DOI: 10.1107/S2056989014026188/wm5094fig1.tif
Displacement ellipsoid plot (30% probability level) of the principal building units of the structure of the title compound. [Symmetry codes: (i) + x,
+ y, 1 + z; (ii) 0.5 – x,
+ y, 1 – z, (iii) x, 1 – y, 1 + z.]
c 6 4 . DOI: 10.1107/S2056989014026188/wm5094fig2.tif
A fragment of three-dimentional coordination polymer of the title compound in a perspective view along c. Polyhedra correspond to FeN6 and PtC4 chromophores.
CCDC reference: 1036669
Additional supporting information: crystallographic information; 3D view; checkCIF report