Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 1;71(Pt 1):i1–i2. doi: 10.1107/S2056989014026188

Crystal structure of the coordination polymer [FeIII 2{PtII(CN)4}3]

Maksym Seredyuk a,*, M Carmen Muñoz b, José A Real c, Turganbay S Iskenderov a
PMCID: PMC4331858  PMID: 25705468

Abstract

The title complex, poly[dodeca-μ-cyanido-diiron(III)triplat­inum(II)], [FeIII 2{PtII(CN)4}3], has a three-dimensional polymeric structure. It is built-up from square-planar [PtII(CN)4]2− anions (point group symmetry 2/m) bridging cationic [FeIIIPtII(CN)4]+ layers extending in the bc plane. The FeII atoms of the layers are located on inversion centres and exhibit an octa­hedral coordination sphere defined by six N atoms of cyanide ligands, while the PtII atoms are located on twofold rotation axes and are surrounded by four C atoms of the cyanide ligands in a square-planar coordination. The geometrical preferences of the two cations for octa­hedral and square-planar coordination, respectively, lead to a corrugated organisation of the layers. The distance between neighbouring [FeIIIPtII(CN)4]+ layers corresponds to the length a/2 = 8.0070 (3) Å, and the separation between two neighbouring PtII atoms of the bridging [PtII(CN)4]2− groups corresponds to the length of the c axis [7.5720 (2) Å]. The structure is porous with accessible voids of 390 Å3 per unit cell.

Keywords: crystal structure, polycyanidometalate, spin-crossover

Related literature  

Coordination compounds have inter­esting properties in catal­ysis (Kanderal et al., 2005; Penkova et al., 2009) or as photoactive materials (Yan et al., 2012). Magnetically active polycyanidometallate network complexes of FeII [FeII L 2{M I(CN)2}2] or [FeII L 2{M II(CN)4}] (M I = Ag, Au; M II = Ni, Pd, Pt; L = N-heterocyclic ligand) have been studied because they show versatile polymeric structures (Piñeiro-López et al. 2014; Seredyuk et al., 2007, 2009), spin transition (Muñoz & Real, 2013) and functionalities such as sorption–desorption of organic and inorganic mol­ecules (Muñoz & Real, 2013) or reversible chemosorption (Arcís-Castillo et al., 2013).

Experimental  

Crystal data  

  • [Fe2Pt3(CN)12]

  • M r = 1009.18

  • Monoclinic, Inline graphic

  • a = 16.0140 (5) Å

  • b = 13.8250 (5) Å

  • c = 7.5720 (2) Å

  • β = 102.946 (2)°

  • V = 1633.78 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 13.68 mm−1

  • T = 293 K

  • 0.04 × 0.04 × 0.02 mm

Data collection  

  • Oxford Diffraction Gemini S Ultra diffractometer

  • Absorption correction: multi-scan (Blessing, 1995) T min = 0.611, T max = 0.772

  • 3358 measured reflections

  • 1909 independent reflections

  • 1568 reflections with I > 2σ(I)

  • R int = 0.038

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.106

  • S = 0.97

  • 1909 reflections

  • 71 parameters

  • Δρmax = 1.25 e Å−3

  • Δρmin = −1.33 e Å−3

Data collection: COLLECT (Nonius, 1999); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989014026188/wm5094sup1.cif

e-71-000i1-sup1.cif (12.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014026188/wm5094Isup2.hkl

e-71-000i1-Isup2.hkl (92.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014026188/wm5094Isup3.cdx

x y z x y z x y z . DOI: 10.1107/S2056989014026188/wm5094fig1.tif

Displacement ellipsoid plot (30% probability level) of the principal building units of the structure of the title compound. [Symmetry codes: (i) Inline graphic + x, Inline graphic + y, 1 + z; (ii) 0.5 – x, Inline graphic + y, 1 – z, (iii) x, 1 – y, 1 + z.]

c 6 4 . DOI: 10.1107/S2056989014026188/wm5094fig2.tif

A fragment of three-dimentional coordination polymer of the title compound in a perspective view along c. Polyhedra correspond to FeN6 and PtC4 chromophores.

CCDC reference: 1036669

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This study was supported by the Spanish Ministerio de Economía y Competitividad (MINECO) and FEDER funds (CTQ2013–46275-P) and Generalitat Valenciana (PROMETEO/2012/049). MS thanks the EU for a Marie Curie fellowship (IIF-253254).

supplementary crystallographic information

S1. Synthesis and crystallization

Single crystals of the title compound were grown using a slow diffusion technique. During the reaction time a side product had formed serendipitously due to oxidation of the initial FeII salt. One side of a multi-arm shaped vessel contained (NH4)2Fe(SO4)2·6H2O (20 mg, 51 mmol) dissolved in water (0.5 mL). The second arm contained K2[Pt(CN)4]·3H2O (22 mg, 51 mmol) in water (0.5 ml). The vessel was filled with a water/methanol (1:1) solution. Square shaped orange crystals suitable for single crystal X-ray analysis were obtained after several weeks.

S2. Refinement

The highest and lowest remaining electron density are located 3.66 and 0.83 Å, respectively, from the Pt atom. The highest electron densities are connected with positions in the voids of the framework. However, modelling of the electron density e.g. under consideration of disordered (partially occupied) water molecules lead to implausible models.

Figures

Fig. 1.

Fig. 1.

Displacement ellipsoid plot (30% probability level) of the principal building units of the structure of the title compound. [Symmetry codes: (i) 1/2 + x, 1/2 + y, 1 + z; (ii) 0.5 – x, 1/2 + y, 1 – z, (iii) x, 1 – y, 1 + z.]

Fig. 2.

Fig. 2.

A fragment of three-dimentional coordination polymer of the title compound in a perspective view along c. Polyhedra correspond to FeN6 and PtC4 chromophores.

Crystal data

[Fe2Pt3(CN)12] F(000) = 884
Mr = 1009.18 Dx = 2.051 Mg m3
Monoclinic, C2/m Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2y Cell parameters from 200 reflections
a = 16.0140 (5) Å θ = 12–20°
b = 13.8250 (5) Å µ = 13.68 mm1
c = 7.5720 (2) Å T = 293 K
β = 102.946 (2)° Prismatic, orange
V = 1633.78 (9) Å3 0.04 × 0.04 × 0.02 mm
Z = 2

Data collection

Oxford Diffraction Gemini S Ultra diffractometer 1909 independent reflections
Radiation source: fine-focus sealed tube 1568 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.038
ω scans θmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan (Blessing, 1995) h = −20→20
Tmin = 0.611, Tmax = 0.772 k = −17→16
3358 measured reflections l = −9→9

Refinement

Refinement on F2 0 constraints
Least-squares matrix: full Primary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.038 Secondary atom site location: difference Fourier map
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0615P)2 + 15.455P] where P = (Fo2 + 2Fc2)/3
S = 0.97 (Δ/σ)max < 0.001
1909 reflections Δρmax = 1.25 e Å3
71 parameters Δρmin = −1.33 e Å3
0 restraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pt1 0.0000 0.0000 0.0000 0.02376 (17)
Pt2 0.19452 (3) 0.5000 0.47749 (5) 0.02524 (16)
Fe 0.2500 0.2500 0.0000 0.0215 (3)
N1 0.1335 (5) 0.1622 (5) −0.0284 (10) 0.0368 (17)
N2 0.2081 (6) 0.3449 (5) 0.1843 (10) 0.0400 (18)
N3 0.3039 (6) 0.1577 (5) 0.2273 (10) 0.0385 (17)
C1 0.0859 (5) 0.1023 (6) −0.0190 (12) 0.0310 (17)
C2 0.2001 (6) 0.4002 (6) 0.2915 (11) 0.0335 (19)
C3 0.3072 (6) 0.1012 (6) 0.3373 (10) 0.0312 (18)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pt1 0.0208 (3) 0.0167 (3) 0.0343 (3) 0.000 0.0073 (2) 0.000
Pt2 0.0389 (3) 0.0182 (2) 0.0195 (2) 0.000 0.00824 (18) 0.000
Fe 0.0294 (8) 0.0165 (7) 0.0199 (7) −0.0040 (6) 0.0083 (6) −0.0004 (5)
N1 0.041 (4) 0.026 (4) 0.042 (4) −0.009 (3) 0.008 (4) −0.002 (3)
N2 0.056 (5) 0.030 (4) 0.038 (4) −0.004 (4) 0.017 (4) −0.006 (3)
N3 0.053 (5) 0.026 (4) 0.037 (4) 0.002 (4) 0.011 (4) 0.006 (3)
C1 0.028 (4) 0.023 (4) 0.043 (4) 0.000 (3) 0.011 (4) 0.004 (3)
C2 0.050 (6) 0.026 (4) 0.026 (4) 0.003 (4) 0.012 (4) −0.001 (3)
C3 0.045 (5) 0.021 (4) 0.025 (4) −0.001 (4) 0.004 (4) 0.000 (3)

Geometric parameters (Å, º)

Pt1—C1 2.000 (8) Fe—N2 2.130 (7)
Pt1—C1i 2.000 (8) Fe—N3vii 2.161 (7)
Pt1—C1ii 2.000 (8) Fe—N3 2.161 (7)
Pt1—C1iii 2.000 (8) Fe—N1vii 2.195 (7)
Pt2—C3iv 1.986 (8) Fe—N1 2.195 (7)
Pt2—C3v 1.986 (8) N1—C1 1.139 (10)
Pt2—C2 1.988 (8) N2—C2 1.143 (11)
Pt2—C2vi 1.988 (8) N3—C3 1.134 (10)
Fe—N2vii 2.130 (7) C3—Pt2v 1.986 (8)
C1—Pt1—C1i 90.0 (5) N3vii—Fe—N3 180.0 (3)
C1—Pt1—C1ii 180.0 (6) N2vii—Fe—N1vii 91.1 (3)
C1i—Pt1—C1ii 90.0 (5) N2—Fe—N1vii 88.9 (3)
C1—Pt1—C1iii 90.0 (5) N3vii—Fe—N1vii 86.0 (3)
C1i—Pt1—C1iii 180.0 (6) N3—Fe—N1vii 94.0 (3)
C1ii—Pt1—C1iii 90.0 (5) N2vii—Fe—N1 88.9 (3)
C3iv—Pt2—C3v 89.6 (4) N2—Fe—N1 91.1 (3)
C3iv—Pt2—C2 178.1 (4) N3vii—Fe—N1 94.0 (3)
C3v—Pt2—C2 91.2 (3) N3—Fe—N1 86.0 (3)
C3iv—Pt2—C2vi 91.2 (3) N1vii—Fe—N1 180.0 (2)
C3v—Pt2—C2vi 178.1 (4) C1—N1—Fe 164.2 (7)
C2—Pt2—C2vi 87.9 (5) C2—N2—Fe 168.3 (8)
N2vii—Fe—N2 180.0 (5) C3—N3—Fe 159.4 (8)
N2vii—Fe—N3vii 88.3 (3) N1—C1—Pt1 178.3 (7)
N2—Fe—N3vii 91.7 (3) N2—C2—Pt2 175.9 (9)
N2vii—Fe—N3 91.7 (3) N3—C3—Pt2v 176.4 (8)
N2—Fe—N3 88.3 (3)

Symmetry codes: (i) x, −y, z; (ii) −x, −y, −z; (iii) −x, y, −z; (iv) −x+1/2, y+1/2, −z+1; (v) −x+1/2, −y+1/2, −z+1; (vi) x, −y+1, z; (vii) −x+1/2, −y+1/2, −z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: WM5094).

References

  1. Arcís-Castillo, Z., Muñoz-Lara, F. J., Muñoz, M. C., Aravena, D., Gaspar, A. B., Sánchez-Royo, J. F., Ruiz, E., Ohba, M., Matsuda, R., Kitagawa, S. & Real, J. A. (2013). Inorg. Chem. 52, 12777–12783. [DOI] [PubMed]
  2. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  3. Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Kanderal, O. M., Kozlowski, H., Dobosz, A., Swiatek-Kozlowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428–1437. [DOI] [PubMed]
  6. Muñoz, M. C. & Real, J. A. (2013). Spin-Crossover Materials, edited by M. A. Halcrow, pp. 121–146: London: John Wiley & Sons Ltd.
  7. Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
  8. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  9. Penkova, L. V., Maciąg, A., Rybak-Akimova, E. V., Haukka, M., Pavlenko, V. A., Iskenderov, T. S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2009). Inorg. Chem. 48, 6960–6971. [DOI] [PubMed]
  10. Piñeiro-López, L., Seredyuk, M., Muñoz, M. C. & Real, J. A. (2014). Chem. Commun. pp. 1833-1835. [DOI] [PubMed]
  11. Seredyuk, M., Gaspar, A. B., Ksenofontov, V., Verdaguer, M., Villain, F. & Gütlich, P. (2009). Inorg. Chem. 48, 6130–6141. [DOI] [PubMed]
  12. Seredyuk, M., Haukka, M., Fritsky, I. O., Kozłowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183–3194. [DOI] [PubMed]
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Yan, B., Li, Y.-Y. & Qiao, X.-F. (2012). Microporous Mesoporous Mater. 158, 129–136.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989014026188/wm5094sup1.cif

e-71-000i1-sup1.cif (12.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014026188/wm5094Isup2.hkl

e-71-000i1-Isup2.hkl (92.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014026188/wm5094Isup3.cdx

x y z x y z x y z . DOI: 10.1107/S2056989014026188/wm5094fig1.tif

Displacement ellipsoid plot (30% probability level) of the principal building units of the structure of the title compound. [Symmetry codes: (i) Inline graphic + x, Inline graphic + y, 1 + z; (ii) 0.5 – x, Inline graphic + y, 1 – z, (iii) x, 1 – y, 1 + z.]

c 6 4 . DOI: 10.1107/S2056989014026188/wm5094fig2.tif

A fragment of three-dimentional coordination polymer of the title compound in a perspective view along c. Polyhedra correspond to FeN6 and PtC4 chromophores.

CCDC reference: 1036669

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES