Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 1;71(Pt 1):8–11. doi: 10.1107/S2056989014026048

Crystal structure of (±)-(4RS,5RS,7SR)-4-[(1RS,2RS,3RS,6RS)-3-benzo­yloxy-2-(2-hy­droxy­ethyl)-6-meth­oxy­meth­oxy-2-methyl­cyclo­hex­yl]-8,10,10-trimethyl-2-oxo-1,3-dioxa­spiro­[4.5]dec-8-en-7-yl benzoate benzene monosolvate

Takeshi Oishi a,*, Yuu Yamaguchi b, Keisuke Fukaya b, Tomoya Sugai b, Ami Watanabe b, Takaaki Sato b, Noritaka Chida b
PMCID: PMC4331859  PMID: 25705437

In the title compound, the ring conformations of the tricycles are in an envelope, a half-chair and a chair. In the crystal, inter­molecular O—H⋯O and C—H⋯O hydrogen bonds and C—H⋯π inter­actions link the mol­ecules into a three-dimensional architecture.

Keywords: crystal structure, hydrogen bonds, taxane skeleton, paclitaxel

Abstract

In the title compound, C36H44O10·C6H6, the dioxolane ring adopts an envelope conformation with the C atom bonded to the H atom as the flap, while the cyclo­hexene and cyclo­hexane rings are in half-chair and chair conformations, respectively. In the crystal, a pair of O—H⋯O hydrogen bonds with an R 2 2(26) graph-set motif connect the benzoate mol­ecules into an inversion dimer. The dimers are linked by a weak C—H⋯O inter­action into a tape structure along [01-1]. The benzene mol­ecule links the tapes through C—H⋯O and C—H⋯π inter­actions, forming a sheet parallel to (100).

Chemical context  

Paclitaxel is a well-known natural diterpenoid containing a taxane framework (tri­cyclo­[9.3.1.03,8]penta­decane; Fig. 1), with potent anti­tumor activity (Wall & Wani, 1995). This unique and complicated structure has attracted significant inter­est, and a large number of synthetic studies have been reported. In these researches, whereas some structure data after cyclization into taxane or taxoid derivatives are available (§ 4), precursors just before cyclization are very few. The title compound has been obtained in our synthetic study of paclitaxel as a cyclization precursor to build the taxane skeleton (Fukaya et al., 2014).graphic file with name e-71-00008-scheme1.jpg

Figure 1.

Figure 1

Left: the structure of the tri­cyclo­[9.3.1.03,8]penta­decane (taxane) skeleton. Right: the title compound. Red lines indicate the taxane skeleton with the expected bond (red dashed line). R 1 = –OC(=O)Ph, R 2 = –OCH2OCH3.

Structural commentary  

The mol­ecular structure of the title compound is shown in Fig. 2. The dioxolane ring (O1/C2/O3/C4/C5) is in an envelope conformation with puckering parameters of Q(2) = 0.165 (2) Å and ϕ(2) = 114.5 (6)°. The flap atom C4 deviates from the mean plane of other atoms by 0.270 (3) Å. The cyclo­hexene ring (C5–C10), which is spiro-fused to the dioxolane ring, is in a half-chair conformation with puckering parameters of Q = 0.469 (2) Å, θ = 127.5 (2)°, ϕ(2) = 197.2 (3)°, Q(2) = 0.372 (2) Å and Q(3) = −0.285 (2) Å. Atoms C5 and C6 deviate from the mean plane of the other atoms by −0.493 (4) and 0.212 (4) Å, respectively. The cyclo­hexane ring (C24–C29) is in a chair conformation with puckering parameters Q = 0.587 (2) Å, θ = 4.6 (2)°, ϕ = 246 (3)°, Q(2) = 0.042 (2) Å and Q(3) = 0.585 (2) Å. The large substituents (C24—C4, C25—C39, C26—O30 and C29—O42) are in the equatorial positions. The meth­oxy­meth­oxy group (O42/C43/O44/C45) shows a helical form with torsion angles of 76.5 (3)° for C29—O42—C43—O44 and 64.8 (3)° for O42—C43—O44—C45 held by weak intra­molecular C—H⋯O inter­actions (Fig. 3, Table 1). The atom pairs which may be connected by cyclization into a taxane framework are C9 and C40 (Figs. 1 and 3) with their distance being 5.831 (3) Å in the present conformation. They are expected to approach each other by rotation about the C4–C24, C25–C39 and C39–C40 bonds.

Figure 2.

Figure 2

The asymmetric unit of the title compound with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Only H atoms connected to O and chiral C atoms are shown for clarity.

Figure 3.

Figure 3

The mol­ecular conformation indicating the intra­molecular C—H⋯O inter­actions with dashed lines. Only H atoms involved in hydrogen bonds are shown for clarity. The benzene solvent mol­ecule has been omitted.

Table 1. Hydrogen-bond geometry (, ).

Cg is the centroid of the C47C52 ring.

DHA DH HA D A DHA
C6H6BO42 0.99 2.32 3.095(2) 135
C28H28AO44 0.99 2.37 2.989(3) 120
O41H41O14i 0.84 2.06 2.888(2) 170
C7H7O32i 1.00 2.34 3.269(2) 155
C18H18O11ii 0.95 2.53 3.465(2) 168
C49H49O11 0.95 2.46 3.300(3) 147
C27H27A Cg iii 0.95 2.64 3.514(2) 147

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Supra­molecular features  

The crystal packing is stabilized by a pair of inter­molecular O—H⋯O hydrogen bonds (O41—H41⋯O14i; Table 1) with an Inline graphic(26) graph-set motif, forming an inversion dimer (Fig. 4). In the dimer, a pair of C—H⋯O hydrogen bonds (C7—H7⋯O32i; Table 1) are also observed. The dimers are further linked by a weak inter­molecular C—H⋯O hydrogen bond (C18—H18⋯O11ii; Table 1) into a tape along [01Inline graphic]. The benzene mol­ecule links adjacent tapes through C—H⋯O and C—H⋯π inter­actions (C49—H49⋯O11 and C27—H27ACg iii; Table 1), forming a sheet parallel to (100).

Figure 4.

Figure 4

The crystal packing viewed along the a axis. Dotted yellow lines indicate the inter­molecular O—H⋯O hydrogen bonds which form the inversion dimers. Black dashed lines indicate the inter­molecular C—H⋯O and C—H⋯π inter­actions. Cg is the centroid of the benzene solvent mol­ecule. Only H atoms involved in hydrogen bonds are shown for clarity. [Symmetry codes: (i) −x + 1, −y + 2, −z + 1; (ii) −x + 1, −y + 1, −z + 2; (iii) −x + 1, −y + 1, −z + 1.]

Database survey  

In the Cambridge Structural Database (CSD, Version 5.35, November 2013; Groom & Allen, 2014), four compounds possessing a core of 6,6,8-trimethyl-1,3-dioxa­spiro­[4.5]dec-7-ene are found (Fig. 5). These include its derivatives with 2-one (PUQLAO; Nishizawa et al., 1998) and 2,2-dimethyl (NEGBOQ; Poujol et al., 1997) substitutes. Another tetra­cyclic taxoid (ILIQUP; Ohba et al., 2003) with a core of 6,6,8-trimethyl-1,3-dioxa­spiro­[4.5]decan-2-one, obtained in our previous study, is closely related to the title compound. Only one crystalline compound just before cyclization is found in the literature (Nicolaou et al., 1995), however it is not registered in the CSD.

Figure 5.

Figure 5

Core substructures for database survey; (a) 6,6,8-trimethyl-1,3-dioxa­spiro­[4.5]dec-7-ene, (b) its 2-one derivative, (c) the 2,2-dimethyl derivative and (d) 6,6,8-trimethyl-1,3-dioxa­spiro­[4.5]decan-2-one.

Synthesis and crystallization  

The title compound was obtained in a synthetic study on paclitaxel. The cyclo­hexene unit (C5–C10) was provided according to the reported procedure (Nicolaou et al., 1995), and coupled with the substituted cyclo­hexane unit (C24–C29) synthesized from 3-methyl­anisole (Fukaya et al., 2014) by a Shapiro reaction (Nicolaou et al., 1995). Further manipulation of the functional groups afforded the title compound, which was purified by silica gel column chromatography. Colorless crystals were grown from a benzene solution under a pentane-saturated atmosphere by slow evaporation at ambient temperature.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. C-bound H atoms were positioned geometrically with C—H = 0.95–1.00 Å, and constrained to ride on their parent atoms with U iso(H) = 1.2U eq(C) or 1.5U eq(methyl C). The H atom of hy­droxy group (O41) was placed guided by difference maps and then treated as riding, with O—H = 0.84 Å and with U iso(H) = 1.5U eq(O). 13 problematic reflections were omitted from the final refinement.

Table 2. Experimental details.

Crystal data
Chemical formula C36H44O10C6H6
M r 714.82
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 90
a, b, c () 9.6397(6), 13.6008(8), 15.0461(10)
, , () 83.6966(19), 77.488(2), 77.9768(18)
V (3) 1879.2(2)
Z 2
Radiation type Mo K
(mm1) 0.09
Crystal size (mm) 0.50 0.37 0.19
 
Data collection
Diffractometer Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Bruker, 2013)
T min, T max 0.96, 0.98
No. of measured, independent and observed [I > 2(I)] reflections 25389, 6526, 5180
R int 0.043
(sin /)max (1) 0.595
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.042, 0.151, 0.93
No. of reflections 6526
No. of parameters 475
H-atom treatment H-atom parameters constrained
max, min (e 3) 0.25, 0.25

Computer programs: APEX2 and SAINT (Bruker, 2013), SHELXS2013 and SHELXL2014 (Sheldrick, 2008), Mercury (Macrae et al., 2006), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989014026048/is5382sup1.cif

e-71-00008-sup1.cif (47.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014026048/is5382Isup2.hkl

e-71-00008-Isup2.hkl (360.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014026048/is5382Isup3.cml

CCDC reference: 1036428

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Professor S. Ohba (Keio University, Japan) and Dr K. Yoza (Bruker AXS Inc.) for providing valuable advice.

supplementary crystallographic information

Crystal data

C36H44O10·C6H6 F(000) = 764
Mr = 714.82 Dx = 1.263 Mg m3
Triclinic, P1 Melting point: 459.2 K
a = 9.6397 (6) Å Mo Kα radiation, λ = 0.71073 Å
b = 13.6008 (8) Å Cell parameters from 9980 reflections
c = 15.0461 (10) Å θ = 2.2–25.1°
α = 83.6966 (19)° µ = 0.09 mm1
β = 77.488 (2)° T = 90 K
γ = 77.9768 (18)° Plate, colorless
V = 1879.2 (2) Å3 0.50 × 0.37 × 0.19 mm
Z = 2

Data collection

Bruker D8 Venture diffractometer 6526 independent reflections
Radiation source: fine-focus sealed tube 5180 reflections with I > 2σ(I)
Multilayered confocal mirror monochromator Rint = 0.043
Detector resolution: 8.333 pixels mm-1 θmax = 25.0°, θmin = 2.2°
φ and ω scans h = −11→11
Absorption correction: multi-scan (SADABS; Bruker, 2013) k = −16→16
Tmin = 0.96, Tmax = 0.98 l = −17→17
25389 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151 H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0996P)2 + 1.0739P] where P = (Fo2 + 2Fc2)/3
6526 reflections (Δ/σ)max = 0.023
475 parameters Δρmax = 0.25 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Experimental. Recrystallization from benzene, toluene, chloroform, dichloromethane, diethyl ether, tetrahydrofuran, ethyl acetate, acetonitrile and methanol solutions under the air were failed. These solutions under hexane atmosphere also gave unsatisfactory results. Only the condition mentioned above has been quite effective to afford the single crystals suitable for X-ray analysis.; M.p. 458.7–459.2 K (not corrected); IR (film): 3524, 2945, 2890, 1790, 1715, 1274, 714 cm-1; 1H NMR (500 MHz, CDCl3): δ (p.p.m.) 8.13–8.10 (m, 2H), 8.03–7.99 (m, 2H), 7.60–7.53 (m, 2H), 7.48–7.42 (m, 4H), 5.56 (d, J = 6.0 Hz, 1H), 5.41 (t, J = 0.9 Hz, 1H), 5.09 (dd, J = 11.5, 4.6 Hz, 1H), 4.84 (s, 1H), 4.49 (d, J = 7.7 Hz, 1H), 4.13 (d, J = 7.7 Hz, 1H), 3.76–3.68 (m, 2H), 3.63 (ddd, J = 10.6, 7.2, 7.2 Hz, 1H), 3.08 (d, J = 14.9 Hz, 1H), 2.66 (s, 3H), 2.40 (dddd, J = 12.9, 4.3, 4.0, 4.0 Hz, 1H), 2.34 (d, J = 10.3 Hz, 1H), 2.29 (dd, J = 15.5, 6.3 Hz, 1H), 1.93 (dddd, J = 12.9, 4.3, 4.3, 4.0 Hz, 1H), 1.75 (d, J = 0.9 Hz, 3H), 1.73–1.60 (m, 3H), 1.59–1.45 (m, 2H), 1.22 (s, 3H), 1.20 (s, 3H), 1.11 (s, 3H); 13C NMR (125 MHz, CDCl3): δ (p.p.m.) 166.4 (C), 166.0 (C), 155.2 (C), 135.1 (CH), 133.4 (CH), 133.3 (CH), 130.5 (C), 130.2 (C), 130.0 (CH), 129.7 (CH), 129.0 (C), 128.7 (CH), 128.7 (CH), 97.9 (CH2), 87.1 (C), 76.9 (CH), 76.5 (CH), 75.1 (CH), 68.7 (CH), 58.3 (CH2), 54.7 (CH3), 45.9 (CH), 42.0 (C), 41.2 (C), 38.1 (CH2), 31.5 (CH2), 30.6 (CH2), 25.7 (CH3), 25.1 (CH2), 22.3 (CH3), 20.2 (CH3), 16.8 (CH3); HRMS (ESI): m/z calcd for C36H44O10Na+ [M+Na]+ 659.2832, found 659.2836.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.Problematic 13 reflections with |I(obs)-I(calc)|/σW(I) greater than 10 (–8 –2 1, –8 –2 2, –8 –1 2, –7 –4 3, –8 –3 6, 3 11 7, 3 10 8, 0 9 9, 2 10 9, 2 8 10, 4 9 10, 2 7 11, 3 8 11) have been omitted in the final refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.25606 (14) 0.79849 (9) 0.81366 (8) 0.0191 (3)
C2 0.2032 (2) 0.71963 (14) 0.79948 (13) 0.0201 (4)
O3 0.16170 (14) 0.73096 (9) 0.71879 (9) 0.0206 (3)
C4 0.2098 (2) 0.81686 (14) 0.66496 (13) 0.0185 (4)
H4 0.1247 0.8597 0.6428 0.022*
C5 0.2481 (2) 0.87501 (14) 0.73783 (12) 0.0181 (4)
C6 0.3931 (2) 0.90852 (14) 0.71464 (13) 0.0194 (4)
H6A 0.3918 0.9613 0.6638 0.023*
H6B 0.4698 0.8506 0.6934 0.023*
C7 0.4298 (2) 0.94956 (14) 0.79519 (13) 0.0204 (4)
H7 0.5042 0.9925 0.7716 0.024*
C8 0.3023 (2) 1.01014 (14) 0.85459 (13) 0.0204 (4)
C9 0.1692 (2) 1.01625 (14) 0.84154 (13) 0.0219 (4)
H9 0.094 1.0582 0.8799 0.026*
C10 0.1244 (2) 0.96338 (14) 0.77197 (13) 0.0206 (4)
O11 0.19139 (15) 0.64864 (10) 0.85222 (9) 0.0258 (3)
O12 0.48877 (14) 0.86671 (9) 0.85533 (9) 0.0206 (3)
C13 0.6265 (2) 0.82130 (14) 0.82802 (13) 0.0204 (4)
O14 0.70642 (15) 0.84907 (11) 0.76027 (10) 0.0279 (3)
C15 0.6684 (2) 0.73187 (15) 0.88941 (13) 0.0221 (4)
C16 0.8142 (2) 0.68716 (16) 0.88007 (14) 0.0264 (5)
H16 0.8853 0.7165 0.8378 0.032*
C17 0.8556 (2) 0.60012 (16) 0.93234 (16) 0.0324 (5)
H17 0.955 0.5699 0.9263 0.039*
C18 0.7518 (3) 0.55705 (16) 0.99346 (15) 0.0328 (5)
H18 0.7799 0.4965 1.0285 0.039*
C19 0.6074 (3) 0.60200 (16) 1.00363 (15) 0.0321 (5)
H19 0.5367 0.5729 1.0465 0.039*
C20 0.5651 (2) 0.68926 (15) 0.95176 (14) 0.0269 (5)
H20 0.4656 0.7198 0.9588 0.032*
C21 0.0916 (2) 1.04115 (15) 0.69334 (15) 0.0282 (5)
H21A 0.0245 1.1008 0.7182 0.042*
H21B 0.0476 1.0116 0.6524 0.042*
H21C 0.1818 1.0606 0.6593 0.042*
C22 −0.0155 (2) 0.92602 (16) 0.81716 (16) 0.0299 (5)
H22A 0.0011 0.8803 0.8705 0.045*
H22B −0.045 0.8902 0.7734 0.045*
H22C −0.0921 0.9837 0.8365 0.045*
C23 0.3361 (2) 1.06479 (16) 0.92679 (14) 0.0274 (5)
H23A 0.2466 1.1054 0.9587 0.041*
H23B 0.4042 1.1089 0.8981 0.041*
H23C 0.3795 1.0157 0.9705 0.041*
C24 0.3249 (2) 0.78089 (14) 0.58056 (13) 0.0191 (4)
H24 0.3926 0.8297 0.5659 0.023*
C25 0.2548 (2) 0.78407 (15) 0.49501 (13) 0.0213 (4)
C26 0.3765 (2) 0.74420 (15) 0.41478 (13) 0.0224 (4)
H26 0.4423 0.7939 0.3956 0.027*
C27 0.4645 (2) 0.64260 (15) 0.43479 (14) 0.0269 (5)
H27A 0.5411 0.623 0.3809 0.032*
H27B 0.4018 0.5915 0.4485 0.032*
C28 0.5328 (2) 0.64693 (15) 0.51624 (14) 0.0248 (4)
H28A 0.5916 0.5802 0.5296 0.03*
H28B 0.5975 0.6967 0.5017 0.03*
C29 0.4158 (2) 0.67659 (14) 0.59900 (13) 0.0208 (4)
H29 0.3513 0.6257 0.6133 0.025*
O30 0.30900 (16) 0.73471 (10) 0.33928 (9) 0.0268 (3)
C31 0.3358 (2) 0.79233 (15) 0.26237 (13) 0.0223 (4)
O32 0.40856 (17) 0.85680 (11) 0.25168 (10) 0.0316 (4)
C33 0.2631 (2) 0.76877 (15) 0.19191 (13) 0.0208 (4)
C34 0.2657 (2) 0.83032 (15) 0.11194 (13) 0.0247 (5)
H34 0.3158 0.8849 0.1024 0.03*
C35 0.1955 (2) 0.81243 (17) 0.04616 (14) 0.0286 (5)
H35 0.1968 0.855 −0.0084 0.034*
C36 0.1237 (2) 0.73291 (18) 0.05975 (14) 0.0330 (5)
H36 0.075 0.7209 0.0147 0.04*
C37 0.1222 (3) 0.67046 (18) 0.13876 (15) 0.0344 (5)
H37 0.0732 0.6153 0.1476 0.041*
C38 0.1919 (2) 0.68816 (16) 0.20503 (14) 0.0296 (5)
H38 0.1909 0.6452 0.2593 0.036*
C39 0.1840 (2) 0.89252 (15) 0.46698 (14) 0.0253 (5)
H39A 0.1477 0.8901 0.4107 0.03*
H39B 0.0986 0.9141 0.5153 0.03*
C40 0.2753 (2) 0.97374 (15) 0.44990 (15) 0.0303 (5)
H40A 0.3069 0.982 0.5066 0.036*
H40B 0.3627 0.954 0.4023 0.036*
O41 0.1917 (2) 1.06636 (12) 0.42091 (11) 0.0461 (5)
H41 0.2305 1.0848 0.3679 0.069*
O42 0.47536 (14) 0.68229 (10) 0.67742 (9) 0.0223 (3)
C43 0.5313 (3) 0.58881 (17) 0.71882 (16) 0.0364 (6)
H43A 0.5402 0.599 0.7814 0.044*
H43B 0.4618 0.5432 0.724 0.044*
O44 0.6660 (2) 0.54241 (13) 0.67142 (12) 0.0538 (5)
C45 0.7765 (3) 0.5978 (3) 0.6691 (3) 0.0826 (13)
H45A 0.7436 0.6683 0.6492 0.124*
H45B 0.8639 0.5691 0.6262 0.124*
H45C 0.7983 0.5943 0.7301 0.124*
C46 0.1359 (2) 0.72061 (16) 0.51442 (14) 0.0273 (5)
H46A 0.096 0.7225 0.4595 0.041*
H46B 0.0588 0.748 0.5644 0.041*
H46C 0.1771 0.6508 0.5318 0.041*
C47 0.1268 (2) 0.40365 (17) 0.63928 (16) 0.0345 (5)
H47 0.0799 0.4303 0.59 0.041*
C48 0.1481 (2) 0.46772 (17) 0.69805 (16) 0.0343 (5)
H48 0.1157 0.5383 0.6892 0.041*
C49 0.2161 (2) 0.42938 (16) 0.76949 (16) 0.0335 (5)
H49 0.2298 0.4736 0.8102 0.04*
C50 0.2644 (3) 0.32710 (17) 0.78217 (16) 0.0356 (5)
H50 0.3119 0.3008 0.8312 0.043*
C51 0.2433 (3) 0.26278 (17) 0.72304 (16) 0.0350 (5)
H51 0.2769 0.1923 0.7314 0.042*
C52 0.1735 (2) 0.30103 (17) 0.65192 (16) 0.0329 (5)
H52 0.1578 0.2569 0.6119 0.04*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0219 (7) 0.0173 (7) 0.0177 (7) −0.0039 (5) −0.0048 (5) 0.0020 (5)
C2 0.0178 (10) 0.0194 (10) 0.0209 (10) −0.0022 (8) −0.0001 (8) −0.0021 (8)
O3 0.0242 (7) 0.0203 (7) 0.0186 (7) −0.0082 (6) −0.0052 (6) 0.0023 (5)
C4 0.0169 (10) 0.0187 (10) 0.0202 (10) −0.0046 (7) −0.0050 (8) 0.0029 (8)
C5 0.0185 (10) 0.0174 (9) 0.0168 (9) −0.0019 (7) −0.0045 (8) 0.0045 (8)
C6 0.0198 (10) 0.0191 (10) 0.0190 (10) −0.0024 (8) −0.0063 (8) 0.0030 (8)
C7 0.0214 (10) 0.0179 (10) 0.0223 (10) −0.0037 (8) −0.0089 (8) 0.0056 (8)
C8 0.0252 (11) 0.0160 (9) 0.0202 (10) −0.0040 (8) −0.0065 (8) 0.0021 (8)
C9 0.0240 (11) 0.0171 (10) 0.0229 (10) −0.0012 (8) −0.0040 (8) −0.0005 (8)
C10 0.0165 (10) 0.0198 (10) 0.0255 (10) −0.0021 (8) −0.0060 (8) −0.0011 (8)
O11 0.0350 (8) 0.0217 (7) 0.0201 (7) −0.0099 (6) −0.0021 (6) 0.0025 (6)
O12 0.0216 (7) 0.0199 (7) 0.0212 (7) −0.0036 (6) −0.0088 (6) 0.0026 (6)
C13 0.0185 (10) 0.0228 (10) 0.0232 (10) −0.0073 (8) −0.0083 (8) −0.0012 (8)
O14 0.0221 (8) 0.0314 (8) 0.0292 (8) −0.0074 (6) −0.0062 (6) 0.0090 (6)
C15 0.0234 (11) 0.0225 (10) 0.0220 (10) −0.0046 (8) −0.0083 (8) 0.0000 (8)
C16 0.0227 (11) 0.0294 (11) 0.0286 (11) −0.0074 (9) −0.0074 (9) 0.0006 (9)
C17 0.0279 (12) 0.0309 (12) 0.0389 (13) −0.0003 (9) −0.0163 (10) 0.0041 (10)
C18 0.0432 (14) 0.0257 (11) 0.0294 (12) −0.0017 (10) −0.0157 (10) 0.0064 (9)
C19 0.0397 (13) 0.0277 (12) 0.0258 (11) −0.0066 (10) −0.0023 (10) 0.0034 (9)
C20 0.0264 (11) 0.0275 (11) 0.0248 (11) −0.0033 (9) −0.0046 (9) 0.0022 (9)
C21 0.0295 (11) 0.0220 (11) 0.0359 (12) 0.0001 (9) −0.0170 (10) −0.0024 (9)
C22 0.0181 (11) 0.0296 (12) 0.0413 (13) −0.0026 (9) −0.0032 (9) −0.0092 (10)
C23 0.0284 (11) 0.0287 (11) 0.0265 (11) −0.0050 (9) −0.0080 (9) −0.0042 (9)
C24 0.0206 (10) 0.0190 (10) 0.0188 (10) −0.0053 (8) −0.0060 (8) 0.0013 (8)
C25 0.0249 (11) 0.0238 (10) 0.0171 (10) −0.0059 (8) −0.0087 (8) 0.0022 (8)
C26 0.0293 (11) 0.0230 (10) 0.0180 (10) −0.0079 (8) −0.0093 (8) 0.0001 (8)
C27 0.0346 (12) 0.0238 (11) 0.0212 (10) −0.0040 (9) −0.0041 (9) −0.0024 (9)
C28 0.0275 (11) 0.0201 (10) 0.0248 (11) 0.0016 (8) −0.0056 (9) −0.0038 (8)
C29 0.0228 (10) 0.0209 (10) 0.0195 (10) −0.0027 (8) −0.0083 (8) 0.0003 (8)
O30 0.0391 (9) 0.0297 (8) 0.0164 (7) −0.0147 (7) −0.0100 (6) 0.0027 (6)
C31 0.0229 (10) 0.0226 (10) 0.0191 (10) −0.0027 (8) −0.0018 (8) 0.0011 (8)
O32 0.0425 (9) 0.0319 (8) 0.0260 (8) −0.0188 (7) −0.0114 (7) 0.0054 (6)
C33 0.0200 (10) 0.0236 (10) 0.0165 (10) −0.0013 (8) −0.0003 (8) −0.0039 (8)
C34 0.0237 (11) 0.0251 (11) 0.0227 (10) −0.0014 (8) −0.0022 (8) −0.0013 (9)
C35 0.0271 (11) 0.0364 (12) 0.0180 (10) 0.0023 (9) −0.0036 (9) −0.0017 (9)
C36 0.0323 (12) 0.0495 (14) 0.0196 (11) −0.0069 (10) −0.0068 (9) −0.0109 (10)
C37 0.0412 (13) 0.0407 (13) 0.0272 (12) −0.0188 (11) −0.0063 (10) −0.0072 (10)
C38 0.0351 (12) 0.0334 (12) 0.0218 (11) −0.0120 (10) −0.0039 (9) −0.0012 (9)
C39 0.0263 (11) 0.0296 (11) 0.0181 (10) 0.0001 (9) −0.0077 (8) 0.0029 (8)
C40 0.0350 (12) 0.0222 (11) 0.0282 (11) 0.0008 (9) −0.0038 (9) 0.0043 (9)
O41 0.0580 (11) 0.0276 (9) 0.0340 (9) 0.0095 (8) 0.0067 (8) 0.0132 (7)
O42 0.0253 (7) 0.0208 (7) 0.0203 (7) 0.0018 (6) −0.0096 (6) −0.0009 (6)
C43 0.0510 (15) 0.0277 (12) 0.0318 (12) 0.0042 (11) −0.0239 (11) 0.0017 (10)
O44 0.0635 (12) 0.0453 (10) 0.0521 (11) 0.0305 (9) −0.0381 (10) −0.0268 (9)
C45 0.0367 (17) 0.125 (3) 0.092 (3) 0.0260 (18) −0.0341 (17) −0.067 (2)
C46 0.0288 (11) 0.0358 (12) 0.0211 (10) −0.0119 (9) −0.0099 (9) 0.0026 (9)
C47 0.0288 (12) 0.0347 (13) 0.0369 (13) −0.0037 (10) −0.0053 (10) 0.0033 (10)
C48 0.0286 (12) 0.0248 (11) 0.0432 (14) −0.0022 (9) 0.0024 (10) 0.0006 (10)
C49 0.0366 (13) 0.0272 (12) 0.0351 (13) −0.0088 (10) 0.0008 (10) −0.0063 (10)
C50 0.0390 (13) 0.0334 (13) 0.0345 (13) −0.0102 (10) −0.0070 (10) 0.0028 (10)
C51 0.0368 (13) 0.0249 (12) 0.0415 (14) −0.0055 (10) −0.0063 (11) 0.0020 (10)
C52 0.0337 (13) 0.0287 (12) 0.0365 (13) −0.0090 (10) −0.0034 (10) −0.0043 (10)

Geometric parameters (Å, º)

O1—C2 1.334 (2) C27—C28 1.523 (3)
O1—C5 1.461 (2) C27—H27A 0.99
C2—O11 1.189 (2) C27—H27B 0.99
C2—O3 1.342 (2) C28—C29 1.516 (3)
O3—C4 1.446 (2) C28—H28A 0.99
C4—C24 1.544 (3) C28—H28B 0.99
C4—C5 1.566 (3) C29—O42 1.435 (2)
C4—H4 1.0 C29—H29 1.0
C5—C6 1.517 (3) O30—C31 1.333 (2)
C5—C10 1.550 (3) C31—O32 1.209 (2)
C6—C7 1.524 (3) C31—C33 1.486 (3)
C6—H6A 0.99 C33—C38 1.385 (3)
C6—H6B 0.99 C33—C34 1.387 (3)
C7—O12 1.464 (2) C34—C35 1.381 (3)
C7—C8 1.501 (3) C34—H34 0.95
C7—H7 1.0 C35—C36 1.375 (3)
C8—C9 1.324 (3) C35—H35 0.95
C8—C23 1.507 (3) C36—C37 1.382 (3)
C9—C10 1.513 (3) C36—H36 0.95
C9—H9 0.95 C37—C38 1.383 (3)
C10—C22 1.534 (3) C37—H37 0.95
C10—C21 1.538 (3) C38—H38 0.95
O12—C13 1.338 (2) C39—C40 1.519 (3)
C13—O14 1.213 (2) C39—H39A 0.99
C13—C15 1.485 (3) C39—H39B 0.99
C15—C20 1.388 (3) C40—O41 1.427 (3)
C15—C16 1.393 (3) C40—H40A 0.99
C16—C17 1.383 (3) C40—H40B 0.99
C16—H16 0.95 O41—H41 0.84
C17—C18 1.385 (3) O42—C43 1.408 (2)
C17—H17 0.95 C43—O44 1.396 (3)
C18—C19 1.381 (3) C43—H43A 0.99
C18—H18 0.95 C43—H43B 0.99
C19—C20 1.385 (3) O44—C45 1.420 (4)
C19—H19 0.95 C45—H45A 0.98
C20—H20 0.95 C45—H45B 0.98
C21—H21A 0.98 C45—H45C 0.98
C21—H21B 0.98 C46—H46A 0.98
C21—H21C 0.98 C46—H46B 0.98
C22—H22A 0.98 C46—H46C 0.98
C22—H22B 0.98 C47—C52 1.380 (3)
C22—H22C 0.98 C47—C48 1.380 (3)
C23—H23A 0.98 C47—H47 0.95
C23—H23B 0.98 C48—C49 1.378 (3)
C23—H23C 0.98 C48—H48 0.95
C24—C29 1.536 (3) C49—C50 1.378 (3)
C24—C25 1.571 (2) C49—H49 0.95
C24—H24 1.0 C50—C51 1.386 (3)
C25—C46 1.535 (3) C50—H50 0.95
C25—C26 1.547 (3) C51—C52 1.383 (3)
C25—C39 1.545 (3) C51—H51 0.95
C26—O30 1.455 (2) C52—H52 0.95
C26—C27 1.500 (3) C9—C40 5.831 (3)
C26—H26 1.0
C2—O1—C5 110.64 (14) C27—C26—C25 114.64 (16)
O11—C2—O1 124.53 (18) O30—C26—H26 109.1
O11—C2—O3 123.74 (17) C27—C26—H26 109.1
O1—C2—O3 111.71 (16) C25—C26—H26 109.1
C2—O3—C4 110.32 (14) C26—C27—C28 109.18 (16)
O3—C4—C24 109.71 (15) C26—C27—H27A 109.8
O3—C4—C5 102.47 (14) C28—C27—H27A 109.8
C24—C4—C5 120.64 (15) C26—C27—H27B 109.8
O3—C4—H4 107.8 C28—C27—H27B 109.8
C24—C4—H4 107.8 H27A—C27—H27B 108.3
C5—C4—H4 107.8 C29—C28—C27 110.00 (16)
O1—C5—C6 106.35 (14) C29—C28—H28A 109.7
O1—C5—C10 107.29 (14) C27—C28—H28A 109.7
C6—C5—C10 110.80 (15) C29—C28—H28B 109.7
O1—C5—C4 101.92 (14) C27—C28—H28B 109.7
C6—C5—C4 117.25 (15) H28A—C28—H28B 108.2
C10—C5—C4 112.21 (15) O42—C29—C28 111.95 (15)
C5—C6—C7 112.96 (16) O42—C29—C24 106.93 (15)
C5—C6—H6A 109.0 C28—C29—C24 110.66 (16)
C7—C6—H6A 109.0 O42—C29—H29 109.1
C5—C6—H6B 109.0 C28—C29—H29 109.1
C7—C6—H6B 109.0 C24—C29—H29 109.1
H6A—C6—H6B 107.8 C31—O30—C26 119.33 (15)
O12—C7—C8 105.62 (15) O32—C31—O30 124.21 (18)
O12—C7—C6 110.35 (14) O32—C31—C33 124.19 (18)
C8—C7—C6 114.15 (16) O30—C31—C33 111.59 (16)
O12—C7—H7 108.9 C38—C33—C34 119.78 (19)
C8—C7—H7 108.9 C38—C33—C31 121.56 (18)
C6—C7—H7 108.9 C34—C33—C31 118.65 (18)
C9—C8—C7 120.99 (18) C35—C34—C33 120.20 (19)
C9—C8—C23 122.92 (19) C35—C34—H34 119.9
C7—C8—C23 116.07 (17) C33—C34—H34 119.9
C8—C9—C10 126.79 (18) C36—C35—C34 119.9 (2)
C8—C9—H9 116.6 C36—C35—H35 120.1
C10—C9—H9 116.6 C34—C35—H35 120.1
C9—C10—C22 108.36 (17) C35—C36—C37 120.3 (2)
C9—C10—C21 108.05 (16) C35—C36—H36 119.9
C22—C10—C21 108.13 (16) C37—C36—H36 119.9
C9—C10—C5 109.25 (15) C38—C37—C36 120.1 (2)
C22—C10—C5 111.47 (16) C38—C37—H37 119.9
C21—C10—C5 111.47 (16) C36—C37—H37 119.9
C13—O12—C7 117.11 (14) C37—C38—C33 119.7 (2)
O14—C13—O12 123.85 (17) C37—C38—H38 120.1
O14—C13—C15 124.22 (18) C33—C38—H38 120.1
O12—C13—C15 111.92 (16) C40—C39—C25 118.35 (17)
C20—C15—C16 119.80 (18) C40—C39—H39A 107.7
C20—C15—C13 121.31 (18) C25—C39—H39A 107.7
C16—C15—C13 118.79 (18) C40—C39—H39B 107.7
C17—C16—C15 120.06 (19) C25—C39—H39B 107.7
C17—C16—H16 120.0 H39A—C39—H39B 107.1
C15—C16—H16 120.0 O41—C40—C39 109.16 (18)
C18—C17—C16 119.9 (2) O41—C40—H40A 109.8
C18—C17—H17 120.0 C39—C40—H40A 109.8
C16—C17—H17 120.0 O41—C40—H40B 109.8
C19—C18—C17 120.1 (2) C39—C40—H40B 109.8
C19—C18—H18 120.0 H40A—C40—H40B 108.3
C17—C18—H18 120.0 C40—O41—H41 109.5
C18—C19—C20 120.4 (2) C43—O42—C29 115.15 (15)
C18—C19—H19 119.8 O44—C43—O42 113.8 (2)
C20—C19—H19 119.8 O44—C43—H43A 108.8
C15—C20—C19 119.7 (2) O42—C43—H43A 108.8
C15—C20—H20 120.1 O44—C43—H43B 108.8
C19—C20—H20 120.1 O42—C43—H43B 108.8
C10—C21—H21A 109.5 H43A—C43—H43B 107.7
C10—C21—H21B 109.5 C43—O44—C45 112.71 (19)
H21A—C21—H21B 109.5 O44—C45—H45A 109.5
C10—C21—H21C 109.5 O44—C45—H45B 109.5
H21A—C21—H21C 109.5 H45A—C45—H45B 109.5
H21B—C21—H21C 109.5 O44—C45—H45C 109.5
C10—C22—H22A 109.5 H45A—C45—H45C 109.5
C10—C22—H22B 109.5 H45B—C45—H45C 109.5
H22A—C22—H22B 109.5 C25—C46—H46A 109.5
C10—C22—H22C 109.5 C25—C46—H46B 109.5
H22A—C22—H22C 109.5 H46A—C46—H46B 109.5
H22B—C22—H22C 109.5 C25—C46—H46C 109.5
C8—C23—H23A 109.5 H46A—C46—H46C 109.5
C8—C23—H23B 109.5 H46B—C46—H46C 109.5
H23A—C23—H23B 109.5 C52—C47—C48 120.1 (2)
C8—C23—H23C 109.5 C52—C47—H47 119.9
H23A—C23—H23C 109.5 C48—C47—H47 119.9
H23B—C23—H23C 109.5 C49—C48—C47 120.1 (2)
C29—C24—C4 112.45 (15) C49—C48—H48 120.0
C29—C24—C25 111.56 (15) C47—C48—H48 120.0
C4—C24—C25 111.32 (15) C48—C49—C50 120.2 (2)
C29—C24—H24 107.1 C48—C49—H49 119.9
C4—C24—H24 107.1 C50—C49—H49 119.9
C25—C24—H24 107.1 C49—C50—C51 119.7 (2)
C46—C25—C26 110.71 (16) C49—C50—H50 120.2
C46—C25—C39 107.03 (16) C51—C50—H50 120.2
C26—C25—C39 108.36 (15) C52—C51—C50 120.2 (2)
C46—C25—C24 111.22 (15) C52—C51—H51 119.9
C26—C25—C24 107.84 (15) C50—C51—H51 119.9
C39—C25—C24 111.66 (15) C47—C52—C51 119.7 (2)
O30—C26—C27 106.89 (15) C47—C52—H52 120.2
O30—C26—C25 107.73 (15) C51—C52—H52 120.2
C5—O1—C2—O11 −176.77 (18) C5—C4—C24—C29 87.2 (2)
C5—O1—C2—O3 1.9 (2) O3—C4—C24—C25 94.64 (17)
O11—C2—O3—C4 −171.43 (18) C5—C4—C24—C25 −146.76 (16)
O1—C2—O3—C4 9.9 (2) C29—C24—C25—C46 69.7 (2)
C2—O3—C4—C24 113.11 (16) C4—C24—C25—C46 −56.9 (2)
C2—O3—C4—C5 −16.21 (18) C29—C24—C25—C26 −51.9 (2)
C2—O1—C5—C6 −134.83 (16) C4—C24—C25—C26 −178.43 (15)
C2—O1—C5—C10 106.55 (16) C29—C24—C25—C39 −170.86 (16)
C2—O1—C5—C4 −11.50 (18) C4—C24—C25—C39 62.6 (2)
O3—C4—C5—O1 16.00 (16) C46—C25—C26—O30 50.78 (19)
C24—C4—C5—O1 −106.16 (17) C39—C25—C26—O30 −66.31 (18)
O3—C4—C5—C6 131.61 (16) C24—C25—C26—O30 172.66 (14)
C24—C4—C5—C6 9.4 (2) C46—C25—C26—C27 −68.1 (2)
O3—C4—C5—C10 −98.47 (16) C39—C25—C26—C27 174.86 (16)
C24—C4—C5—C10 139.36 (17) C24—C25—C26—C27 53.8 (2)
O1—C5—C6—C7 −57.91 (19) O30—C26—C27—C28 −177.59 (15)
C10—C5—C6—C7 58.4 (2) C25—C26—C27—C28 −58.3 (2)
C4—C5—C6—C7 −171.06 (15) C26—C27—C28—C29 59.7 (2)
C5—C6—C7—O12 81.26 (19) C27—C28—C29—O42 −179.61 (15)
C5—C6—C7—C8 −37.5 (2) C27—C28—C29—C24 −60.4 (2)
O12—C7—C8—C9 −114.50 (19) C4—C24—C29—O42 −54.6 (2)
C6—C7—C8—C9 6.9 (3) C25—C24—C29—O42 179.52 (14)
O12—C7—C8—C23 67.2 (2) C4—C24—C29—C28 −176.75 (15)
C6—C7—C8—C23 −171.41 (16) C25—C24—C29—C28 57.4 (2)
C7—C8—C9—C10 2.7 (3) C27—C26—O30—C31 −120.95 (19)
C23—C8—C9—C10 −179.15 (18) C25—C26—O30—C31 115.37 (18)
C8—C9—C10—C22 139.3 (2) C26—O30—C31—O32 −3.6 (3)
C8—C9—C10—C21 −103.8 (2) C26—O30—C31—C33 177.38 (16)
C8—C9—C10—C5 17.7 (3) O32—C31—C33—C38 174.2 (2)
O1—C5—C10—C9 69.18 (18) O30—C31—C33—C38 −6.9 (3)
C6—C5—C10—C9 −46.5 (2) O32—C31—C33—C34 −6.7 (3)
C4—C5—C10—C9 −179.68 (15) O30—C31—C33—C34 172.23 (17)
O1—C5—C10—C22 −50.6 (2) C38—C33—C34—C35 1.1 (3)
C6—C5—C10—C22 −166.25 (16) C31—C33—C34—C35 −178.07 (18)
C4—C5—C10—C22 60.6 (2) C33—C34—C35—C36 −0.5 (3)
O1—C5—C10—C21 −171.49 (14) C34—C35—C36—C37 −0.4 (3)
C6—C5—C10—C21 72.82 (19) C35—C36—C37—C38 0.6 (3)
C4—C5—C10—C21 −60.3 (2) C36—C37—C38—C33 0.0 (3)
C8—C7—O12—C13 −158.97 (15) C34—C33—C38—C37 −0.8 (3)
C6—C7—O12—C13 77.20 (19) C31—C33—C38—C37 178.25 (19)
C7—O12—C13—O14 5.0 (3) C46—C25—C39—C40 175.91 (17)
C7—O12—C13—C15 −173.77 (15) C26—C25—C39—C40 −64.7 (2)
O14—C13—C15—C20 −163.81 (19) C24—C25—C39—C40 54.0 (2)
O12—C13—C15—C20 15.0 (3) C25—C39—C40—O41 177.32 (17)
O14—C13—C15—C16 12.6 (3) C28—C29—O42—C43 −74.0 (2)
O12—C13—C15—C16 −168.65 (17) C24—C29—O42—C43 164.63 (17)
C20—C15—C16—C17 0.5 (3) C29—O42—C43—O44 76.5 (2)
C13—C15—C16—C17 −175.95 (19) O42—C43—O44—C45 64.8 (3)
C15—C16—C17—C18 0.5 (3) C52—C47—C48—C49 0.1 (3)
C16—C17—C18—C19 −1.3 (3) C47—C48—C49—C50 0.6 (3)
C17—C18—C19—C20 1.2 (3) C48—C49—C50—C51 −0.4 (3)
C16—C15—C20—C19 −0.6 (3) C49—C50—C51—C52 −0.3 (3)
C13—C15—C20—C19 175.70 (19) C48—C47—C52—C51 −0.8 (3)
C18—C19—C20—C15 −0.2 (3) C50—C51—C52—C47 0.9 (3)
O3—C4—C24—C29 −31.4 (2)

Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C47–C52 ring.

D—H···A D—H H···A D···A D—H···A
C6—H6B···O42 0.99 2.32 3.095 (2) 135
C28—H28A···O44 0.99 2.37 2.989 (3) 120
O41—H41···O14i 0.84 2.06 2.888 (2) 170
C7—H7···O32i 1.00 2.34 3.269 (2) 155
C18—H18···O11ii 0.95 2.53 3.465 (2) 168
C49—H49···O11 0.95 2.46 3.300 (3) 147
C27—H27A···Cgiii 0.95 2.64 3.514 (2) 147

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+1, −y+1, −z+2; (iii) −x+1, −y+1, −z+1.

References

  1. Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Fukaya, K., Sugai, T., Yamaguchi, Y., Watanabe, A., Sato, T. & Chida, N. (2014). In preparation.
  3. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  4. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  5. Nicolaou, K. C., Liu, J.-J., Yang, Z., Ueno, H., Sorensen, E. J., Claiborne, C. F., Guy, R. K., Hwang, C.-K., Nakada, M. & Nantermet, P. G. (1995). J. Am. Chem. Soc. 117, 634–644.
  6. Nishizawa, M., Imagawa, H., Hyodo, I., Takeji, M., Morikuni, E., Asoh, K. & Yamada, H. (1998). Tetrahedron Lett. 39, 389–392.
  7. Ohba, S., Chinen, A., Matsumoto, Y. & Chida, N. (2003). Acta Cryst. E59, o1476–o1477.
  8. Poujol, H., Ahond, A., Al Mourabit, A., Chiaroni, A., Poupat, C., Riche, C. & Potier, P. (1997). Tetrahedron, 53, 5169–5184.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Wall, M. E. & Wani, M. C. (1995). ACS Symp. Ser. 583, 18–30.
  12. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989014026048/is5382sup1.cif

e-71-00008-sup1.cif (47.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014026048/is5382Isup2.hkl

e-71-00008-Isup2.hkl (360.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014026048/is5382Isup3.cml

CCDC reference: 1036428

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES