Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 1;71(Pt 1):m1–m2. doi: 10.1107/S2056989014025626

Crystal structure of poly[(N,N-di­methyl­acetamide-κO)(μ4-5-methyl­isophthalato-κ5 O:O,O′:O′′:O′′′)manganese(II)]

Lan Jin a, Li-Li Zha a, San Gao a, Shi-Yao Yang a,*, Rong-Bin Huang a
PMCID: PMC4331860  PMID: 25705469

Abstract

The title compound, poly[(N,N-di­methyl­acetamide-κO)(μ4-5-methyl­isophthalato-κ5 O,O′:O′,O′′:O′′)manganese(II)], [Mn(C9H6O4)(C3H7NO)]n, was obtained from a mixture containing MnCl2·4H2O and 5-methyl­isophthalic acid in N,N-di­methyl­acetamide solution. The Mn2+ ion is coordinated by five O atoms from four bridging 5-methyl­isophthalate ligands and one O atom from one N,N-di­methyl­acetamide ligand, defining a considerably distorted coordination polyhedron with one very long Mn—O bond of 2.623 (2) Å. The Mn2+ ions are joined by carboxyl­ate groups, forming rod-shaped secondary building units along the a axis. The rods are further connected by 5-methyl­isophthalate ligands to form the pcu (primitive cubic net) structure.

Keywords: crystal structure; manganese(II) coordination polymer; pcu structure; N,N-di­methyl­acetamide; 5-methyl­isophthalate

Related literature  

For the structures of coordination polymers comprising first-row transition metal ions and benzene di­carboxyl­ates, see: Deng et al. (2013); Jin et al. (2012); Li et al. (2010); Yang et al. (2013); Zhou et al. (2009). For the nomenclature for metal-organic frameworks, see: Rosi et al. (2005);. A very closely related crystal structure, poly[(di­methyl­formamide)(5-meth­oxy­benzene-1,3-di­carboxyl­ato)manganese(II)], was reported recently (Huang, 2013). The author described the structure in a PtS (cooperite) topology according to a different analytical approach (Carlucci et al., 2003; Hill et al., 2005).graphic file with name e-71-000m1-scheme1.jpg

Experimental  

Crystal data  

  • [Mn(C9H6O4)(C3H7NO)]

  • M r = 306.17

  • Orthorhombic, Inline graphic

  • a = 7.281 (5) Å

  • b = 15.148 (11) Å

  • c = 10.903 (8) Å

  • V = 1202.5 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.11 mm−1

  • T = 200 K

  • 0.15 × 0.10 × 0.10 mm

Data collection  

  • Bruker APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.851, T max = 0.897

  • 10159 measured reflections

  • 2874 independent reflections

  • 2768 reflections with I > 2σ(I)

  • R int = 0.025

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.024

  • wR(F 2) = 0.059

  • S = 1.07

  • 2874 reflections

  • 175 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.29 e Å−3

  • Absolute structure: Flack (1983), 0 Friedel pairs

  • Absolute structure parameter: 0.025 (14)

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, AE2. DOI: 10.1107/S2056989014025626/fk2084sup1.cif

e-71-000m1-sup1.cif (22.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014025626/fk2084Isup2.hkl

e-71-000m1-Isup2.hkl (141.1KB, hkl)

x y z x y z x y z x y z x y z x y z . DOI: 10.1107/S2056989014025626/fk2084fig1.tif

Coordination modes in (I). Anisotropic displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: i −x, −y + 2, z + Inline graphic; ii −x + Inline graphic, y − Inline graphic, z + Inline graphic; iii x − Inline graphic, −y + Inline graphic, z; iv x + Inline graphic, −y + Inline graphic, z; v −x + Inline graphic, y + Inline graphic, z − Inline graphic; vi −x, −y + 2, z − Inline graphic.

a 6 . DOI: 10.1107/S2056989014025626/fk2084fig2.tif

The packing of (I), viewed down the a axis, showing MnO6 in polyhedra.

CCDC reference: 1035658

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (, ).

Mn1O4i 2.0609(19)
Mn1O3ii 2.0855(15)
Mn1O1 2.0885(16)
Mn1O5 2.1342(18)
Mn1O2iii 2.1378(16)
O4iMn1O3ii 131.59(6)
O4iMn1O1 83.59(6)
O3iiMn1O1 98.77(7)
O4iMn1O5 83.95(6)
O3iiMn1O5 84.88(7)
O1Mn1O5 166.04(5)
O4iMn1O2iii 135.70(6)
O3iiMn1O2iii 92.23(7)
O1Mn1O2iii 97.51(7)
O5Mn1O2iii 95.80(7)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

We are grateful for financial support by the National Natural Science Foundation of China (grant Nos. 21071117 and 21471125).

supplementary crystallographic information

S1. Structural commentary

We have reported the structures of dozens of coordination polymers comprising first-row transition metal ions and benzene di­carboxyl­ates (Deng et al., 2013; Jin et al., 2012; Li et al. 2010; Yang et al., 2013; Zhou et al., 2009). We found that metal ion is the most important factor that influences the structure of coordination polymer.

The title compound, [Mn(C9H6O4)(C3H7O)]n, (I) was obtained with the same method reported in our previous paper (Yang et al., 2013). The structure feature of I is quite similar to those manganese analogs reported in that paper. The Mn2+ ions are joined by carboxyl groups to form rod-shaped secondary building units (SBUs) along the a axis. Each rod is further connected to four adjacent rods by 5-methyl­isophthalates to form the rod packing type 2 pcu (primitive cubic net) structure according to the nomenclature for metal-organic frameworks (Rosi et al., 2005). A very closely related molecular structure, poly[(di­methyl­formamide)(5-meth­oxy­benzene-1,3-di­carboxyl­ato)manganese(II)], was reported recently (Huang, 2013). The author described the structure in PtS (cooperite) topology according to a different analysis approach (Carlucci et al., 2003; Hill et al., 2005).

S2. Synthesis and crystallization

A mixture containing MnCl2.4H2O (0.039 g, 0.20 mmol) and 5-methyl­isophthalic acid (H2mip, 0.036 g, 0.20 mmol) in 10 mL N,N-di­methyl­acetamide (DMF) was heated at 100 °C for 5000 min. Colourless block crystals were generated (0.025 g, 41%).

S3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms bonded to C atoms were positioned geometrically and refined using a riding model (including free rotation about the C—C bond), with C—H = 0.95–0.99 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Figures

Fig. 1.

Fig. 1.

Coordination modes in (I). Anisotropic displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: i -x, -y + 2, z + 1/2; ii -x + 1/2, y - 1/2, z + 1/2; iii x - 1/2, -y + 3/2, z; iv x + 1/2, -y + 3/2, z; v -x + 1/2, y + 1/2, z - 1/2; vi -x, -y + 2, z - 1/2.

Fig. 2.

Fig. 2.

The packing of (I), viewed down the a axis, showing MnO6 in polyhedra.

Crystal data

[Mn(C9H6O4)(C3H7NO)] F(000) = 628
Mr = 306.17 Dx = 1.691 Mg m3
Orthorhombic, Pna21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2n Cell parameters from 6647 reflections
a = 7.281 (5) Å θ = 2.3–28.7°
b = 15.148 (11) Å µ = 1.11 mm1
c = 10.903 (8) Å T = 200 K
V = 1202.5 (15) Å3 Rod, colorless
Z = 4 0.15 × 0.10 × 0.10 mm

Data collection

Bruker APEX area-detector diffractometer 2874 independent reflections
Radiation source: fine-focus sealed tube 2768 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.025
φ and ω scan θmax = 29.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) h = −9→9
Tmin = 0.851, Tmax = 0.897 k = −19→19
10159 measured reflections l = −13→14

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024 H-atom parameters constrained
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.0316P)2 + 0.1079P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.001
2874 reflections Δρmax = 0.26 e Å3
175 parameters Δρmin = −0.29 e Å3
1 restraint Absolute structure: Flack (1983), 0 Friedel pairs
Primary atom site location: structure-invariant direct methods Absolute structure parameter: 0.025 (14)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mn1 0.02668 (3) 0.718473 (13) 0.40075 (4) 0.01733 (7)
O1 0.21890 (19) 0.76885 (7) 0.27699 (13) 0.0264 (3)
O2 0.40794 (19) 0.87833 (8) 0.28213 (14) 0.0320 (3)
O3 0.30783 (16) 1.12474 (7) −0.01315 (13) 0.0244 (3)
O4 0.02059 (16) 1.15017 (8) −0.06146 (13) 0.0254 (3)
O5 −0.15683 (19) 0.69631 (9) 0.55025 (14) 0.0301 (3)
N1 −0.2451 (2) 0.61847 (11) 0.71232 (16) 0.0323 (4)
C1 0.1457 (2) 0.89377 (11) 0.16063 (16) 0.0210 (3)
C2 0.1976 (2) 0.97512 (10) 0.11805 (18) 0.0208 (3)
H2A 0.3104 1.0003 0.1442 0.025*
C3 0.0878 (2) 1.02002 (10) 0.03817 (16) 0.0196 (3)
C4 −0.0754 (2) 0.98383 (11) 0.00205 (17) 0.0237 (3)
H4A −0.1529 1.0157 −0.0523 0.028*
C5 −0.1290 (3) 0.90257 (12) 0.04273 (18) 0.0269 (4)
C6 −0.0157 (3) 0.85839 (12) 0.12133 (19) 0.0261 (4)
H6A −0.0505 0.8014 0.1494 0.031*
C7 0.2643 (2) 0.84485 (11) 0.24625 (17) 0.0236 (4)
C8 0.1438 (2) 1.10570 (10) −0.01549 (17) 0.0197 (3)
C9 −0.3076 (3) 0.86426 (15) 0.0039 (3) 0.0448 (6)
H9A −0.2980 0.7997 0.0020 0.067*
H9B −0.3392 0.8861 −0.0780 0.067*
H9C −0.4034 0.8817 0.0623 0.067*
C10 −0.1507 (3) 0.63087 (12) 0.61313 (19) 0.0282 (4)
H10A −0.0704 0.5849 0.5880 0.034*
C11 −0.2297 (3) 0.53842 (16) 0.7799 (2) 0.0459 (6)
H11A −0.1283 0.5032 0.7469 0.069*
H11B −0.3446 0.5050 0.7731 0.069*
H11C −0.2057 0.5520 0.8664 0.069*
C12 −0.3792 (4) 0.68114 (17) 0.7505 (3) 0.0545 (7)
H12A −0.3596 0.7369 0.7069 0.082*
H12B −0.3680 0.6911 0.8390 0.082*
H12C −0.5022 0.6586 0.7319 0.082*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mn1 0.01845 (11) 0.01338 (10) 0.02015 (12) 0.00142 (7) 0.00145 (16) 0.00084 (12)
O1 0.0343 (7) 0.0170 (5) 0.0279 (7) 0.0074 (5) 0.0119 (6) 0.0068 (5)
O2 0.0262 (7) 0.0330 (7) 0.0368 (8) −0.0002 (6) −0.0060 (6) 0.0145 (6)
O3 0.0188 (6) 0.0207 (5) 0.0336 (7) −0.0019 (4) 0.0012 (5) 0.0087 (5)
O4 0.0232 (6) 0.0172 (6) 0.0359 (8) 0.0006 (4) −0.0074 (5) 0.0059 (5)
O5 0.0333 (7) 0.0266 (6) 0.0305 (8) 0.0002 (6) 0.0079 (6) 0.0069 (6)
N1 0.0328 (9) 0.0366 (9) 0.0274 (10) −0.0036 (7) 0.0051 (7) 0.0065 (7)
C1 0.0227 (8) 0.0191 (7) 0.0211 (8) 0.0021 (6) 0.0043 (6) 0.0043 (6)
C2 0.0192 (8) 0.0193 (7) 0.0240 (8) 0.0002 (6) 0.0026 (6) 0.0021 (6)
C3 0.0202 (8) 0.0175 (7) 0.0212 (8) 0.0010 (6) 0.0047 (7) 0.0019 (6)
C4 0.0217 (8) 0.0230 (8) 0.0264 (9) 0.0006 (6) 0.0005 (7) 0.0053 (7)
C5 0.0267 (9) 0.0274 (9) 0.0267 (9) −0.0067 (7) −0.0001 (7) 0.0044 (7)
C6 0.0295 (9) 0.0201 (8) 0.0286 (10) −0.0051 (6) 0.0048 (7) 0.0040 (7)
C7 0.0262 (8) 0.0235 (8) 0.0213 (9) 0.0070 (7) 0.0060 (7) 0.0051 (7)
C8 0.0223 (8) 0.0168 (7) 0.0199 (8) 0.0008 (6) 0.0000 (6) 0.0005 (6)
C9 0.0371 (12) 0.0452 (12) 0.0521 (14) −0.0188 (9) −0.0127 (10) 0.0132 (11)
C10 0.0253 (9) 0.0291 (9) 0.0303 (10) −0.0008 (7) 0.0022 (8) 0.0026 (8)
C11 0.0445 (13) 0.0526 (13) 0.0407 (14) −0.0074 (10) 0.0018 (11) 0.0222 (11)
C12 0.0674 (17) 0.0524 (14) 0.0437 (15) 0.0092 (13) 0.0238 (13) −0.0037 (12)

Geometric parameters (Å, º)

Mn1—O4i 2.0609 (19) C2—C3 1.364 (2)
Mn1—O3ii 2.0855 (15) C2—H2A 0.9500
Mn1—O1 2.0885 (16) C3—C4 1.367 (2)
Mn1—O5 2.1342 (18) C3—C8 1.481 (2)
Mn1—O2iii 2.1378 (16) C4—C5 1.365 (2)
O1—C7 1.244 (2) C4—H4A 0.9500
O2—C7 1.226 (2) C5—C6 1.365 (3)
O2—Mn1iv 2.1378 (16) C5—C9 1.485 (3)
O3—C8 1.229 (2) C6—H6A 0.9500
O3—Mn1v 2.0855 (15) C9—H9A 0.9800
O4—C8 1.228 (2) C9—H9B 0.9800
O4—Mn1vi 2.0609 (18) C9—H9C 0.9800
O5—C10 1.206 (2) C10—H10A 0.9500
N1—C10 1.295 (3) C11—H11A 0.9800
N1—C11 1.424 (3) C11—H11B 0.9800
N1—C12 1.424 (3) C11—H11C 0.9800
C1—C6 1.361 (3) C12—H12A 0.9800
C1—C2 1.370 (2) C12—H12B 0.9800
C1—C7 1.472 (2) C12—H12C 0.9800
O4i—Mn1—O3ii 131.59 (6) C4—C5—C9 120.65 (19)
O4i—Mn1—O1 83.59 (6) C1—C6—C5 121.77 (17)
O3ii—Mn1—O1 98.77 (7) C1—C6—H6A 119.1
O4i—Mn1—O5 83.95 (6) C5—C6—H6A 119.1
O3ii—Mn1—O5 84.88 (7) O2—C7—O1 121.56 (17)
O1—Mn1—O5 166.04 (5) O2—C7—C1 119.62 (16)
O4i—Mn1—O2iii 135.70 (6) O1—C7—C1 118.76 (17)
O3ii—Mn1—O2iii 92.23 (7) O4—C8—O3 126.10 (17)
O1—Mn1—O2iii 97.51 (7) O4—C8—C3 116.16 (16)
O5—Mn1—O2iii 95.80 (7) O3—C8—C3 117.70 (15)
C7—O1—Mn1 133.66 (12) C5—C9—H9A 109.5
C7—O2—Mn1iv 104.72 (11) C5—C9—H9B 109.5
C8—O3—Mn1v 135.39 (11) H9A—C9—H9B 109.5
C8—O4—Mn1vi 137.13 (12) C5—C9—H9C 109.5
C10—O5—Mn1 122.70 (13) H9A—C9—H9C 109.5
C10—N1—C11 120.94 (19) H9B—C9—H9C 109.5
C10—N1—C12 120.75 (18) O5—C10—N1 125.04 (18)
C11—N1—C12 118.1 (2) O5—C10—H10A 117.5
C6—C1—C2 119.04 (17) N1—C10—H10A 117.5
C6—C1—C7 120.53 (16) N1—C11—H11A 109.5
C2—C1—C7 120.42 (17) N1—C11—H11B 109.5
C3—C2—C1 120.22 (17) H11A—C11—H11B 109.5
C3—C2—H2A 119.9 N1—C11—H11C 109.5
C1—C2—H2A 119.9 H11A—C11—H11C 109.5
C2—C3—C4 119.58 (15) H11B—C11—H11C 109.5
C2—C3—C8 121.87 (16) N1—C12—H12A 109.5
C4—C3—C8 118.50 (15) N1—C12—H12B 109.5
C5—C4—C3 121.09 (17) H12A—C12—H12B 109.5
C5—C4—H4A 119.5 N1—C12—H12C 109.5
C3—C4—H4A 119.5 H12A—C12—H12C 109.5
C6—C5—C4 118.27 (17) H12B—C12—H12C 109.5
C6—C5—C9 121.07 (18)
O4i—Mn1—O1—C7 −2.37 (18) Mn1iv—O2—C7—O1 −2.1 (2)
O3ii—Mn1—O1—C7 −133.56 (19) Mn1iv—O2—C7—C1 −179.51 (13)
O5—Mn1—O1—C7 −29.3 (4) Mn1—O1—C7—O2 104.6 (2)
O2iii—Mn1—O1—C7 132.99 (19) Mn1—O1—C7—C1 −78.0 (2)
O4i—Mn1—O5—C10 −152.61 (17) C6—C1—C7—O2 −178.90 (18)
O3ii—Mn1—O5—C10 −19.79 (16) C2—C1—C7—O2 2.0 (3)
O1—Mn1—O5—C10 −125.7 (2) C6—C1—C7—O1 3.7 (3)
O2iii—Mn1—O5—C10 71.94 (17) C2—C1—C7—O1 −175.45 (17)
C6—C1—C2—C3 0.5 (3) Mn1vi—O4—C8—O3 −26.5 (3)
C7—C1—C2—C3 179.64 (16) Mn1vi—O4—C8—C3 155.59 (13)
C1—C2—C3—C4 0.8 (3) Mn1v—O3—C8—O4 −12.1 (3)
C1—C2—C3—C8 −176.42 (16) Mn1v—O3—C8—C3 165.74 (13)
C2—C3—C4—C5 −1.3 (3) C2—C3—C8—O4 −163.04 (17)
C8—C3—C4—C5 176.03 (17) C4—C3—C8—O4 19.7 (2)
C3—C4—C5—C6 0.4 (3) C2—C3—C8—O3 18.9 (2)
C3—C4—C5—C9 179.3 (2) C4—C3—C8—O3 −158.37 (17)
C2—C1—C6—C5 −1.4 (3) Mn1—O5—C10—N1 172.24 (15)
C7—C1—C6—C5 179.47 (18) C11—N1—C10—O5 179.4 (2)
C4—C5—C6—C1 0.9 (3) C12—N1—C10—O5 5.1 (3)
C9—C5—C6—C1 −178.0 (2)

Symmetry codes: (i) −x, −y+2, z+1/2; (ii) −x+1/2, y−1/2, z+1/2; (iii) x−1/2, −y+3/2, z; (iv) x+1/2, −y+3/2, z; (v) −x+1/2, y+1/2, z−1/2; (vi) −x, −y+2, z−1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: FK2084).

References

  1. Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Carlucci, L., Ciani, G. & Proserpio, D. M. (2003). Coord. Chem. Rev. 246, 247–289.
  4. Deng, X.-L., Yang, S.-Y., Jin, R.-F., Tao, J., Wu, C.-Q., Li, Z.-L., Long, L.-S., Huang, R.-B. & Zheng, L.-S. (2013). Polyhedron, 50, 219–228.
  5. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  6. Hill, R. J., Long, D.-L., Champness, N. R., Hubberstey, P. & Schröder, M. (2005). Acc. Chem. Res. 38, 337–350. [DOI] [PubMed]
  7. Huang, X.-H. (2013). Acta Cryst. C69, 483–485. [DOI] [PubMed]
  8. Jin, R.-F., Yang, S.-Y., Li, H.-M., Long, L.-S., Huang, R.-B. & Zheng, L.-S. (2012). CrystEngComm, 14, 1301–1316.
  9. Li, H.-M., Yang, S.-Y., Wang, J.-W., Long, L.-S., Huang, R.-B. & Zheng, L.-S. (2010). Polyhedron, 29, 2851–2856.
  10. Rosi, N. L., Kim, J., Eddaoudi, M., Chen, B., O’Keeffe, M. & Yaghi, O. M. (2005). J. Am. Chem. Soc. 127, 1504–1518. [DOI] [PubMed]
  11. Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Yang, S.-Y., Yuan, H.-B., Xu, X.-B. & Huang, R.-B. (2013). Inorg. Chim. Acta, 403, 53–62.
  14. Zhou, D.-S., Wang, F.-K., Yang, S.-Y., Xie, Z.-X. & Huang, R.-B. (2009). CrystEngComm, 11, 2548–2554.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, AE2. DOI: 10.1107/S2056989014025626/fk2084sup1.cif

e-71-000m1-sup1.cif (22.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014025626/fk2084Isup2.hkl

e-71-000m1-Isup2.hkl (141.1KB, hkl)

x y z x y z x y z x y z x y z x y z . DOI: 10.1107/S2056989014025626/fk2084fig1.tif

Coordination modes in (I). Anisotropic displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: i −x, −y + 2, z + Inline graphic; ii −x + Inline graphic, y − Inline graphic, z + Inline graphic; iii x − Inline graphic, −y + Inline graphic, z; iv x + Inline graphic, −y + Inline graphic, z; v −x + Inline graphic, y + Inline graphic, z − Inline graphic; vi −x, −y + 2, z − Inline graphic.

a 6 . DOI: 10.1107/S2056989014025626/fk2084fig2.tif

The packing of (I), viewed down the a axis, showing MnO6 in polyhedra.

CCDC reference: 1035658

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES