Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 1;71(Pt 1):42–44. doi: 10.1107/S2056989014026607

Crystal structure of dioxidobis(pentane-2,4-dionato-κ2 O,O′)[1-phenyl-3-(pyridin-4-yl)propane-κN]uranium(VI)

Takeshi Kawasaki a, Takafumi Kitazawa a,b,*
PMCID: PMC4331861  PMID: 25705446

[UO2(acac)2(ppp)] is constructed from one uran­yl(VI) unit, two anionic acetyl­acetonate (acac) ligands and one 1-phenyl-3-(pyridin-4-yl)propane (ppp) ligand. The U atom exhibits a UNO6 penta­gonal–bipyramidal coordination geometry; two uran­yl(VI) O atoms are located at the axial positions, whereas four O atoms from two chelating bidentate acac ligands and one N atom of a ppp ligand form the equatorial plane.

Keywords: crystal structure; pentane-2,4-dionate; 1-phenyl-3-(pyridin-4-yl)propane; uranium(VI) complex

Abstract

In the title compound, [UO2(C5H7O2)2(C14H15N)], the uran­yl(VI) unit ([O=U=O]2+) is coordinated to two acetyl­acetonate (acac) anions and one 1-phenyl-3-(pyridin-4-yl)propane (ppp) mol­ecule. The geometry around the U atom is UNO6 penta­gonal–bipyramidal; two uran­yl(VI) O atoms are located at the axial positions, whereas four O atoms from two chelating bidentate acac ligands and one N atom of a ppp ligand form the equatorial plane.

Chemical context  

The structural properties of uran­yl(VI) complexes are inter­esting from the viewpoint of nuclear fuels reprocessing and actinide waste treatment. In most commercial reprocessing plants, spent nuclear fuels are treated by the Purex method, in which uranium and plutonium are extracted from a nitric acid solution of spent nuclear fuels using tributyl-phosphate/n-dodecane. Uranium in the nitric acid solution exists as uran­yl(VI) ([O=U=O]2+) complexes. However, the Purex method has a few problems; for example, as the processing takes place on a relatively large scale, a large amount of extractant is necessary (Ikeda et al., 2004; Suzuki et al., 2012) Attempts to find other suitable coordinating ligands are therefore being undertaken. A number of structural studies of uran­yl(VI) β-diketonate complexes have been reported by ourselves and others (Alcock et al., 1984, 1987; Huuskonen et al., 2007; Kannan et al., 2001; Kawasaki & Kitazawa, 2008; Kawasaki et al., 2010; Sidorenko et al., 2009; Tahir et al., 2006; Takao & Ikeda, 2008). In particular, acetyl­acetonate (acac), is the simplest β-diketonate ligand and an important coordin­ating ligand for uranium. graphic file with name e-71-00042-scheme1.jpg

We report herein the synthesis and crystal structure of a novel uran­yl(VI) acetyl­acetonate (acac) complex with the pyridine-based ligand ppp [ppp = 1-phenyl-3-(pyridin-4-yl)propane] (Seth, 2014), namely, [UO2(acac)2(ppp)].

Structural commentary  

The title compound of formula [UO2(C5H7O2)2(C14H15N)], is constructed from one uran­yl(VI) ([O=U=O]2+) unit, two acetyl­acetonate anions and one mol­ecule of ppp (Fig. 1). The uranium(VI) atom exhibits a penta­gonal–bipyramidal coord­ination geometry: two uran­yl(VI) oxygen atoms (O1 and O2) are located in the axial positions and four oxygen atoms (O3, O4, O5 and O6) from two chelating bidentate acac ions, together with one nitro­gen atom (N1) of the ppp mol­ecule, form the equatorial plane. The bond lengths around U1 (Table 1) decrease in the order U—N > U—Oacac > U=O. The dihedral angle between the pyridine ring of the ppp mol­ecule and the equatorial plane around U1 is 49.43 (12)°. The above structural properties are similar to those in the majority of previously characterised [UO2(acac)2 L] (L = pyridine derivative ligand) complexes (Alcock et al., 1984; Kawasaki & Kitazawa, 2008; Kawasaki et al., 2010). The conformation of the ppp mol­ecule is GG′ (Fig. 2). The dihedral angle between the pyridine ring and the phenyl ring in the ppp mol­ecule is 26.96 (13)°.

Figure 1.

Figure 1

The mol­ecular structure of [UO2(acac)2(ppp)]. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.

Table 1. Selected geometric parameters (, ).

U1O1 1.773(3) U1O5 2.348(2)
U1O2 1.777(3) U1O6 2.354(2)
U1O3 2.330(2) U1N1 2.610(3)
U1O4 2.360(2)    
       
O1U1O2 179.19(11) O1U1N1 86.45(11)
O3U1O4 70.88(9) O2U1N1 92.74(11)
O3U1O6 138.83(9) O3U1N1 69.37(9)
O4U1O5 79.13(9) O6U1N1 70.15(9)
O5U1O6 70.91(9)    

Figure 2.

Figure 2

The four possible conformations that the ppp ligand can form (based on Carlucci et al., 2002). In the title compound, the conformation is GG′.

Supra­molecular features  

A packing diagram of title complex is shown in Fig. 3. The mol­ecules are stacked along the b axis, held together by van der Waals’ inter­actions only. Significant inter­molecular π–π and C—H⋯π inter­actions are not found.

Figure 3.

Figure 3

A packing diagram of the title complex (red line: a axis; green line: b axis; blue line: c axis). Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.

Synthesis and crystallization  

The title complex was synthesized according to literature procedures (Alcock et al., 1984, 1987; Kawasaki & Kitazawa, 2008; Kawasaki et al., 2010). To 10 ml of a methano­lic solution containing 1 mmol UO2(NO3)2·6H2O was added 3 mmol of acetyl­acetone and 3 mmol of 1-phenyl-3-(pyridin-4-yl)propane in 5 ml MeOH. The solvent evaporated slowly at room temperature for a few days and orange crystal were obtained.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were placed at calculated positions [C(CH)—H = 0.93, C(CH2)—H = 0.97 and C(CH3)—H = 0.96Å] and allowed to ride on their parent atoms with U iso(H) = 1.2U eq(CH,CH2) and U iso(H) = 1.5U eq(CH3).

Table 2. Experimental details.

Crystal data
Chemical formula [UO2(C5H7O2)2(C14H15N)]
M r 665.51
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 297
a, b, c () 8.2100(16), 11.530(2), 14.516(3)
, , () 108.67(3), 98.50(3), 100.81(3)
V (3) 1246.4(4)
Z 2
Radiation type Mo K
(mm1) 6.55
Crystal size (mm) 0.47 0.29 0.26
 
Data collection
Diffractometer Bruker SMART APEXII
Absorption correction Analytical (XPREP; Bruker, 2007)
T min, T max 0.149, 0.281
No. of measured, independent and observed [I > 2(I)] reflections 9353, 6948, 6026
R int 0.015
(sin /)max (1) 0.722
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.027, 0.056, 0.99
No. of reflections 6948
No. of parameters 293
H-atom treatment H-atom parameters constrained
max, min (e 3) 0.88, 0.64

Computer programs: APEX2, SAINT and XSCANS (Bruker, 2007), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989014026607/cq2012sup1.cif

e-71-00042-sup1.cif (29.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014026607/cq2012Isup2.hkl

e-71-00042-Isup2.hkl (340KB, hkl)

CCDC reference: 1037284

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a MEXT (Ministry of Education, Culture, Sports, Science and Technology, Japan)-Supported Program for the Strategic Research Foundation at Private Universities 2012–2016.

supplementary crystallographic information

Crystal data

[U(C5H7O2)2O2(C14H15N)] Z = 2
Mr = 665.51 F(000) = 640
Triclinic, P1 Dx = 1.773 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.2100 (16) Å Cell parameters from 4311 reflections
b = 11.530 (2) Å θ = 2.6–28.5°
c = 14.516 (3) Å µ = 6.55 mm1
α = 108.67 (3)° T = 297 K
β = 98.50 (3)° Block, orange
γ = 100.81 (3)° 0.47 × 0.29 × 0.26 mm
V = 1246.4 (4) Å3

Data collection

Bruker SMART APEXII diffractometer 6948 independent reflections
Radiation source: fine-focus sealed tube 6026 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.015
Detector resolution: 8.333 pixels mm-1 θmax = 30.9°, θmin = 1.9°
ω scans h = −11→9
Absorption correction: analytical (XPREP; Bruker, 2007) k = −16→15
Tmin = 0.149, Tmax = 0.281 l = −14→20
9353 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056 H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0257P)2] where P = (Fo2 + 2Fc2)/3
6948 reflections (Δ/σ)max = 0.003
293 parameters Δρmax = 0.88 e Å3
0 restraints Δρmin = −0.64 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
U1 0.488854 (15) 0.690915 (11) 0.372080 (8) 0.03519 (4)
O1 0.3391 (3) 0.5504 (2) 0.3581 (2) 0.0535 (6)
O2 0.6386 (3) 0.8327 (2) 0.38786 (19) 0.0525 (6)
O3 0.6977 (3) 0.6473 (3) 0.47398 (18) 0.0566 (7)
O4 0.6471 (3) 0.5741 (2) 0.27211 (18) 0.0521 (6)
O5 0.3569 (4) 0.6784 (3) 0.21310 (17) 0.0579 (7)
O6 0.2846 (3) 0.8105 (3) 0.38825 (18) 0.0567 (7)
N1 0.4613 (4) 0.7730 (3) 0.55740 (19) 0.0397 (6)
C1 0.9705 (6) 0.6794 (5) 0.5706 (3) 0.0810 (14)
H1A 0.9878 0.7680 0.6071 0.121*
H1B 1.0774 0.6618 0.5601 0.121*
H1C 0.9231 0.6316 0.6080 0.121*
C2 0.8488 (5) 0.6426 (3) 0.4705 (3) 0.0493 (9)
C3 0.9047 (5) 0.6043 (4) 0.3827 (3) 0.0573 (10)
H3 1.0188 0.6043 0.3872 0.069*
C4 0.8004 (5) 0.5661 (3) 0.2886 (3) 0.0497 (9)
C5 0.8646 (7) 0.5049 (5) 0.1981 (4) 0.0757 (14)
H5A 0.7867 0.4249 0.1584 0.114*
H5B 0.9744 0.4920 0.2186 0.114*
H5C 0.8738 0.5586 0.1595 0.114*
C6 0.2066 (7) 0.6847 (5) 0.0645 (3) 0.0796 (15)
H6A 0.3049 0.7172 0.0433 0.119*
H6B 0.1140 0.7170 0.0434 0.119*
H6C 0.1752 0.5940 0.0354 0.119*
C7 0.2466 (5) 0.7251 (4) 0.1764 (3) 0.0496 (9)
C8 0.1637 (5) 0.8067 (4) 0.2321 (3) 0.0560 (10)
H8 0.0878 0.8375 0.1980 0.067*
C9 0.1856 (4) 0.8459 (3) 0.3350 (3) 0.0473 (8)
C10 0.0891 (6) 0.9354 (4) 0.3879 (3) 0.0670 (12)
H10A −0.0194 0.8881 0.3894 0.101*
H10B 0.0723 0.9919 0.3531 0.101*
H10C 0.1526 0.9833 0.4549 0.101*
C11 0.4545 (5) 0.6962 (3) 0.6101 (3) 0.0449 (8)
H11 0.4583 0.6129 0.5791 0.054*
C12 0.4422 (5) 0.7361 (4) 0.7083 (3) 0.0479 (8)
H12 0.4371 0.6798 0.7421 0.058*
C13 0.4373 (4) 0.8594 (3) 0.7568 (2) 0.0434 (8)
C14 0.4484 (5) 0.9381 (3) 0.7028 (3) 0.0476 (8)
H14 0.4501 1.0227 0.7333 0.057*
C15 0.4570 (5) 0.8929 (3) 0.6042 (3) 0.0470 (8)
H15 0.4599 0.9474 0.5688 0.056*
C16 0.4135 (6) 0.9028 (4) 0.8628 (3) 0.0576 (10)
H16A 0.4701 0.9919 0.8956 0.069*
H16B 0.4675 0.8568 0.8984 0.069*
C17 0.2268 (6) 0.8831 (4) 0.8692 (3) 0.0586 (10)
H17A 0.1655 0.7980 0.8253 0.070*
H17B 0.2195 0.8901 0.9367 0.070*
C18 0.1404 (5) 0.9765 (4) 0.8412 (3) 0.0536 (9)
H18A 0.1565 0.9747 0.7759 0.064*
H18B 0.0192 0.9492 0.8361 0.064*
C19 0.2056 (5) 1.1116 (4) 0.9144 (3) 0.0488 (8)
C20 0.1846 (6) 1.1420 (4) 1.0114 (3) 0.0621 (11)
H20 0.1317 1.0788 1.0318 0.075*
C21 0.2424 (6) 1.2672 (5) 1.0796 (3) 0.0750 (14)
H21 0.2255 1.2868 1.1442 0.090*
C22 0.3239 (6) 1.3604 (5) 1.0503 (4) 0.0772 (14)
H22 0.3654 1.4431 1.0952 0.093*
C23 0.3428 (7) 1.3292 (5) 0.9534 (4) 0.0796 (14)
H23 0.3952 1.3923 0.9328 0.096*
C24 0.2867 (6) 1.2082 (4) 0.8869 (3) 0.0627 (11)
H24 0.3030 1.1900 0.8222 0.075*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
U1 0.03593 (7) 0.03608 (7) 0.03601 (7) 0.01545 (5) 0.00830 (5) 0.01242 (5)
O1 0.0494 (15) 0.0444 (15) 0.0616 (16) 0.0058 (12) 0.0129 (12) 0.0154 (12)
O2 0.0563 (16) 0.0411 (14) 0.0611 (16) 0.0096 (12) 0.0197 (13) 0.0182 (12)
O3 0.0536 (16) 0.078 (2) 0.0503 (14) 0.0391 (15) 0.0132 (12) 0.0262 (14)
O4 0.0537 (16) 0.0575 (16) 0.0478 (14) 0.0285 (13) 0.0151 (12) 0.0124 (12)
O5 0.0669 (18) 0.0722 (19) 0.0417 (13) 0.0421 (15) 0.0081 (12) 0.0175 (13)
O6 0.0607 (17) 0.0762 (19) 0.0453 (13) 0.0456 (15) 0.0134 (12) 0.0208 (13)
N1 0.0469 (16) 0.0383 (15) 0.0385 (14) 0.0166 (13) 0.0148 (12) 0.0141 (12)
C1 0.067 (3) 0.093 (4) 0.075 (3) 0.026 (3) −0.012 (2) 0.029 (3)
C2 0.046 (2) 0.043 (2) 0.062 (2) 0.0183 (16) 0.0049 (17) 0.0212 (17)
C3 0.0358 (19) 0.065 (3) 0.079 (3) 0.0201 (18) 0.0187 (19) 0.030 (2)
C4 0.052 (2) 0.044 (2) 0.068 (2) 0.0230 (17) 0.0303 (19) 0.0257 (18)
C5 0.093 (4) 0.072 (3) 0.086 (3) 0.043 (3) 0.054 (3) 0.032 (3)
C6 0.092 (4) 0.107 (4) 0.046 (2) 0.048 (3) 0.004 (2) 0.029 (2)
C7 0.048 (2) 0.056 (2) 0.0462 (19) 0.0167 (18) 0.0018 (16) 0.0232 (17)
C8 0.055 (2) 0.064 (3) 0.052 (2) 0.030 (2) 0.0006 (18) 0.0204 (19)
C9 0.0377 (18) 0.043 (2) 0.058 (2) 0.0173 (15) 0.0035 (16) 0.0130 (17)
C10 0.062 (3) 0.068 (3) 0.071 (3) 0.040 (2) 0.011 (2) 0.014 (2)
C11 0.057 (2) 0.0391 (19) 0.0473 (19) 0.0229 (16) 0.0172 (17) 0.0184 (15)
C12 0.060 (2) 0.049 (2) 0.0470 (19) 0.0214 (18) 0.0182 (17) 0.0262 (17)
C13 0.0427 (19) 0.048 (2) 0.0362 (16) 0.0154 (16) 0.0057 (14) 0.0101 (15)
C14 0.060 (2) 0.0379 (19) 0.0438 (18) 0.0158 (17) 0.0158 (17) 0.0096 (15)
C15 0.062 (2) 0.0379 (19) 0.0488 (19) 0.0157 (17) 0.0215 (17) 0.0192 (16)
C16 0.076 (3) 0.066 (3) 0.0361 (18) 0.034 (2) 0.0081 (18) 0.0178 (18)
C17 0.079 (3) 0.055 (2) 0.051 (2) 0.021 (2) 0.029 (2) 0.0227 (19)
C18 0.052 (2) 0.057 (2) 0.053 (2) 0.0113 (18) 0.0174 (18) 0.0191 (19)
C19 0.0391 (19) 0.058 (2) 0.048 (2) 0.0161 (17) 0.0076 (16) 0.0160 (18)
C20 0.063 (3) 0.065 (3) 0.056 (2) 0.015 (2) 0.018 (2) 0.017 (2)
C21 0.073 (3) 0.084 (4) 0.058 (3) 0.033 (3) 0.011 (2) 0.007 (2)
C22 0.069 (3) 0.051 (3) 0.094 (4) 0.018 (2) −0.001 (3) 0.009 (3)
C23 0.081 (3) 0.053 (3) 0.103 (4) 0.013 (2) 0.019 (3) 0.029 (3)
C24 0.064 (3) 0.063 (3) 0.069 (3) 0.021 (2) 0.019 (2) 0.030 (2)

Geometric parameters (Å, º)

U1—O1 1.773 (3) C10—H10A 0.9600
U1—O2 1.777 (3) C10—H10B 0.9600
U1—O3 2.330 (2) C10—H10C 0.9600
U1—O4 2.360 (2) C11—C12 1.376 (5)
U1—O5 2.348 (2) C11—H11 0.9300
U1—O6 2.354 (2) C12—C13 1.382 (5)
U1—N1 2.610 (3) C12—H12 0.9300
O3—C2 1.260 (4) C13—C14 1.375 (5)
O4—C4 1.272 (4) C13—C16 1.512 (5)
O5—C7 1.271 (4) C14—C15 1.375 (5)
O6—C9 1.251 (4) C14—H14 0.9300
N1—C11 1.342 (4) C15—H15 0.9300
N1—C15 1.342 (4) C16—C17 1.528 (6)
C1—C2 1.519 (5) C16—H16A 0.9700
C1—H1A 0.9600 C16—H16B 0.9700
C1—H1B 0.9600 C17—C18 1.519 (5)
C1—H1C 0.9600 C17—H17A 0.9700
C2—C3 1.384 (6) C17—H17B 0.9700
C3—C4 1.386 (6) C18—C19 1.517 (6)
C3—H3 0.9300 C18—H18A 0.9700
C4—C5 1.501 (5) C18—H18B 0.9700
C5—H5A 0.9600 C19—C20 1.382 (5)
C5—H5B 0.9600 C19—C24 1.389 (6)
C5—H5C 0.9600 C20—C21 1.407 (6)
C6—C7 1.505 (5) C20—H20 0.9300
C6—H6A 0.9600 C21—C22 1.375 (7)
C6—H6B 0.9600 C21—H21 0.9300
C6—H6C 0.9600 C22—C23 1.375 (7)
C7—C8 1.385 (5) C22—H22 0.9300
C8—C9 1.388 (5) C23—C24 1.362 (6)
C8—H8 0.9300 C23—H23 0.9300
C9—C10 1.504 (5) C24—H24 0.9300
O1—U1—O2 179.19 (11) O6—C9—C8 122.9 (3)
O1—U1—O3 91.86 (12) O6—C9—C10 116.8 (3)
O1—U1—O4 91.38 (11) C8—C9—C10 120.3 (3)
O1—U1—O5 89.82 (12) C9—C10—H10A 109.5
O1—U1—O6 92.85 (12) C9—C10—H10B 109.5
O2—U1—O3 87.91 (12) H10A—C10—H10B 109.5
O2—U1—O4 89.27 (11) C9—C10—H10C 109.5
O2—U1—O5 90.77 (12) H10A—C10—H10C 109.5
O2—U1—O6 86.82 (11) H10B—C10—H10C 109.5
O3—U1—O4 70.88 (9) N1—C11—C12 122.5 (3)
O3—U1—O5 149.99 (9) N1—C11—H11 118.8
O3—U1—O6 138.83 (9) C12—C11—H11 118.8
O4—U1—O5 79.13 (9) C11—C12—C13 120.3 (3)
O4—U1—O6 149.71 (9) C11—C12—H12 119.8
O5—U1—O6 70.91 (9) C13—C12—H12 119.8
O1—U1—N1 86.45 (11) C14—C13—C12 116.7 (3)
O2—U1—N1 92.74 (11) C14—C13—C16 122.3 (3)
O3—U1—N1 69.37 (9) C12—C13—C16 121.0 (3)
O4—U1—N1 140.08 (8) C15—C14—C13 120.7 (3)
O5—U1—N1 140.62 (9) C15—C14—H14 119.6
O6—U1—N1 70.15 (9) C13—C14—H14 119.6
C2—O3—U1 132.2 (2) N1—C15—C14 122.3 (3)
C4—O4—U1 132.7 (2) N1—C15—H15 118.9
C7—O5—U1 137.4 (2) C14—C15—H15 118.9
C9—O6—U1 139.2 (2) C13—C16—C17 113.2 (3)
C11—N1—C15 117.5 (3) C13—C16—H16A 108.9
C11—N1—U1 120.6 (2) C17—C16—H16A 108.9
C15—N1—U1 121.9 (2) C13—C16—H16B 108.9
C2—C1—H1A 109.5 C17—C16—H16B 108.9
C2—C1—H1B 109.5 H16A—C16—H16B 107.7
H1A—C1—H1B 109.5 C18—C17—C16 113.9 (3)
C2—C1—H1C 109.5 C18—C17—H17A 108.8
H1A—C1—H1C 109.5 C16—C17—H17A 108.8
H1B—C1—H1C 109.5 C18—C17—H17B 108.8
O3—C2—C3 123.9 (4) C16—C17—H17B 108.8
O3—C2—C1 115.6 (4) H17A—C17—H17B 107.7
C3—C2—C1 120.5 (4) C19—C18—C17 114.2 (3)
C2—C3—C4 123.8 (3) C19—C18—H18A 108.7
C2—C3—H3 118.1 C17—C18—H18A 108.7
C4—C3—H3 118.1 C19—C18—H18B 108.7
O4—C4—C3 124.5 (3) C17—C18—H18B 108.7
O4—C4—C5 115.8 (4) H18A—C18—H18B 107.6
C3—C4—C5 119.7 (4) C20—C19—C24 117.9 (4)
C4—C5—H5A 109.5 C20—C19—C18 120.4 (4)
C4—C5—H5B 109.5 C24—C19—C18 121.7 (4)
H5A—C5—H5B 109.5 C19—C20—C21 120.9 (4)
C4—C5—H5C 109.5 C19—C20—H20 119.5
H5A—C5—H5C 109.5 C21—C20—H20 119.5
H5B—C5—H5C 109.5 C22—C21—C20 119.7 (5)
C7—C6—H6A 109.5 C22—C21—H21 120.1
C7—C6—H6B 109.5 C20—C21—H21 120.1
H6A—C6—H6B 109.5 C21—C22—C23 118.8 (5)
C7—C6—H6C 109.5 C21—C22—H22 120.6
H6A—C6—H6C 109.5 C23—C22—H22 120.6
H6B—C6—H6C 109.5 C24—C23—C22 121.7 (5)
O5—C7—C8 124.5 (3) C24—C23—H23 119.1
O5—C7—C6 115.5 (4) C22—C23—H23 119.1
C8—C7—C6 120.0 (3) C23—C24—C19 120.8 (4)
C7—C8—C9 124.8 (3) C23—C24—H24 119.6
C7—C8—H8 117.6 C19—C24—H24 119.6
C9—C8—H8 117.6

References

  1. Alcock, N. W., Flanders, D. J. & Brown, D. (1984). J. Chem. Soc. Dalton Trans. pp. 679–681.
  2. Alcock, N. W., Flanders, D. J., Pennington, M. & Brown, D. (1987). Acta Cryst. C43, 1476–1480.
  3. Bruker (2007). APEX2, XSCANS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Carlucci, L., Ciani, G., Proserpio, D. M. & Rizzato, S. (2002). CrystEngComm, 4, 121–129.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Huuskonen, J., Raatikainen, K. & Rissanen, K. (2007). Acta Cryst. E63, m413–m414.
  7. Ikeda, Y., Wada, E., Harada, M., Chikazawa, T., Kikuchi, T., Mineo, H., Morita, Y., Nogami, M. & Suzuki, K. (2004). J. Alloys Compd, 374, 420–425.
  8. Kannan, S., Shanmugasundara Raj, S. & Fun, H.-K. (2001). Polyhedron, 20, 2145–2150.
  9. Kawasaki, T. & Kitazawa, T. (2008). Acta Cryst. E64, m788. [DOI] [PMC free article] [PubMed]
  10. Kawasaki, T., Nishimura, T. & Kitazawa, T. (2010). Bull. Chem. Soc. Jpn, 83, 1528–1530.
  11. Seth, S. K. (2014). J. Mol. Struct. 1070, 65–74.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Sidorenko, G. V., Grigor’ev, M. S., Gurzhiy, V. V., Suglobov, D. N. & Tananaev, I. G. (2009). Radiochemistry, 51, 345–349.
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  15. Suzuki, T., Kawasaki, T., Takao, K., Harada, M., Nogami, M. & Ikeda, Y. (2012). J. Nucl. Sci. Technol. 49, 1010–1017.
  16. Tahir, A. A., Hamid, M., Mazhar, M., Zeller, M. & Hunter, A. D. (2006). Acta Cryst. E62, m1780–m1781.
  17. Takao, K. & Ikeda, Y. (2008). Acta Cryst. E64, m219–m220. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989014026607/cq2012sup1.cif

e-71-00042-sup1.cif (29.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014026607/cq2012Isup2.hkl

e-71-00042-Isup2.hkl (340KB, hkl)

CCDC reference: 1037284

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES