Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 1;71(Pt 1):76–78. doi: 10.1107/S2056989014026735

Crystal structure of catena-poly[[[aqua­lithium(I)]-μ-pyrimidine-2-carboxyl­ato-κ4 N 1,O 2:N 3,O 2′] hemihydrate]

Wojciech Starosta a, Janusz Leciejewicz a,*
PMCID: PMC4331868  PMID: 25705456

In this one-dimensional coordination polymer, four symmetry-independent Li(C5H3N2O2)(H2O) units form mol­ecular ribbons running along the unit-cell c-axis direction. Within each ribbon, the ligand mol­ecule, acting in a μ2-mode, bridges two adjacent Li cations using both its N,O-bonding sites.

Keywords: crystal structure, one-dimensional coordination polymer, lithium compound, pyrimidine-2-carboxyl­ate, hydrogen bonding

Abstract

The title compound, {[Li(C5H3N2O2)(H2O)]·0.5H2O}n, comprises four symmetry-independent Li(C5H3N2O2)(H2O) units which form mol­ecular ribbons running along the c-axis direction. Within each ribbon, the ligand mol­ecule, acting in a μ2-mode, bridges two adjacent Li+ cations using both of its N,O-bonding sites. The coordination environment of each of the four Li+ cations can be described alternatively as either slightly distorted trigonal–bipyramidal or slightly distorted square–pyramidal. The ribbons are inter­connected by a network of O—H⋯O hydrogen bonds.

Chemical context  

The pyrimidine-2-carboxyl­ato ligand exhibits rich versatility when applied to the synthesis of functional materials, resulting in structures with inter­esting structural and magnetic properties. Zeolite-type structures have been reported for CdII coordination polymers with this ligand (Sava et al., 2008; Zhang et al., 2008a ). A variety of polymeric mol­ecular patterns have been observed in the structures of a number of divalent metal complexes with the title ligand, for example: MnII (Rodríguez-Diéguez et al., 2008; Zhang et al., 2008b ); FeII and CoII (Rodríguez-Diéguez et al., 2007; Zhao & Liu, 2010); CaII (Zhang et al., 2008b ); CuII (Suárez-Varela et al., 2008). Polymeric mol­ecular patterns were also found in two LiI structures with the pyrimidine-2-carboxyl­ato ligand (Starosta & Lecieje­wicz, 2011, 2012). Inter­esting hexa­nuclear, wheel-shaped nickel cationic complexes with the pyrimidine-2-carboxyl­ato ligand, encapsulating ClO4 or BF4 anions have been synthesized (Colacio et al., 2009). Structures built of monomeric mol­ecules have been also reported in an AgI complex by Kokunov & Gorbunova (2007) and in a CuII complex by Suárez-Varela et al. (2008) and Zhang et al. (2008c ).graphic file with name e-71-00076-scheme1.jpg

In the course of our studies of coordination modes of lithium complexes with diazine carboxyl­ates, a third lithium complex with the title ligand has recently been synthesized.

Structural commentary  

A mol­ecular assembly consisting of an aqua-coordinated LiI cation and a bonded pyrimidine-2-carboxyl­ate (C5H3N2O2) ligand constitutes the structural unit of the title polymeric compound, {[Li(C5H3N2O2)(H2O)]·0.5H2O}n. There are four such assemblies in the asymmetric unit. Linked into pairs, they form mol­ecular ribbons in which the (C5H3N2O2) ligand bridges adjacent LiI cations using both its N,O bonding sites (μ2-bridging mode) (Fig. 1). The ribbons propagate in the c-axis direction (Fig. 2).

Figure 1.

Figure 1

Fragments of two mol­ecular ribbons in the structure of the title compound, showing the atom labels and 50% probability displacement ellipsoids for the non-H atoms. [Symmetry codes: (i) x, y, z + 1; (ii) x, y, z − 1.]

Figure 2.

Figure 2

The packing of mol­ecular ribbons in the structure of the title compound as viewed down the ribbon direction (the crystallographic c axis). For clarity, H atoms are not shown.

All four LiI cations show a penta-coordination mode which can be described by two alternative geometries: either trigonal–bipyramidal or square–pyramidal, both slightly deformed. For example, in the case of the Li1 cation, the equatorial plane of a trigonal bipyramid consists of atoms O13, N11 and N23 with Li1 0.0712 (5) Å out of this plane; atoms O11 and O22 are at the apices. On the other hand, the base of the square pyramid is formed by the O11, O22, N11 and N23 atoms [r.m.s. 0.0069 (1) Å], O13 is at the apex; the Li1 cation is 0.3989 (8) Å out of the base. A similar description can be made for the remaining three independent LiO3N2 groups. The Li—O and Li—N bond lengths (Table 1) fall in the range commonly observed in other Li complexes with the title ligand (Starosta & Leciejewicz, 2011, 2012). The pyrimidine rings of all four ligand mol­ecules are almost planar, with r.m.s. deviations ranging from 0.0024 (1) (ligand 4) to 0.0094 (1) Å (ligand 1). The carboxyl­ate groups make dihedral angles with hetero-rings in the range from 2.8 (1) (ligand 2) to 7.6 (1)° (ligand 1).

Table 1. Selected bond lengths ().

Li1O13 2.012(14) Li3O33 2.002(13)
Li1O11 2.030(10) Li3O31 2.107(10)
Li1N23 2.111(11) Li3O42 2.103(10)
Li1N11 2.121(11) Li3N43 2.154(9)
Li1O22 2.154(10) Li3N31 2.164(9)
Li2O23 1.996(12) Li4O43 2.010(12)
Li2O12 2.077(10) Li4O32 2.092(9)
Li2O21i 2.094(10) Li4N41i 2.107(10)
Li2N13 2.138(9) Li4N33 2.120(10)
Li2N21i 2.180(9) Li4O41i 2.126(9)

Symmetry code: (i) Inline graphic.

Supra­molecular features  

The ribbons inter­act via a network of hydrogen bonds (Table 2). Water mol­ecules of solvation act as donors, while the carboxyl­ate O atoms from adjacent ribbons act as acceptors. Hydrogen bonds between coordinating water mol­ecules as donors and carboxyl­ate O atoms belonging to adjacent ribbons as acceptors are also observed.

Table 2. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
O1H11O31 0.86(2) 1.99(3) 2.814(7) 159(8)
O1H12O22ii 0.86(2) 2.06(2) 2.897(8) 164(6)
O2H21O32ii 0.86(2) 2.04(3) 2.849(7) 155(7)
O2H22O21iii 0.86(2) 1.90(2) 2.755(7) 174(8)
O13H131O41i 0.86(1) 2.13(3) 2.898(6) 149(4)
O13H132O1iv 0.86(2) 2.02(3) 2.867(6) 165(7)
O23H232O13v 0.86(2) 2.01(3) 2.807(6) 154(5)
O33H331O12vi 0.86(2) 1.93(2) 2.777(7) 169(6)
O33H332O43ii 0.85(2) 2.31(3) 3.106(6) 154(6)
O43H431O22 0.86(2) 2.03(2) 2.879(6) 170(7)
O43H432O2vii 0.86(1) 2.00(4) 2.773(6) 148(5)
O23H231O42viii 0.86(1) 1.86(2) 2.715(6) 177(5)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic.

Related complexes  

The title compound is the third Li complex with the pyrimidine-2-carboxyl­ate ligand reported so far. In one of these complexes (Starosta & Leciejewicz, 2011), mol­ecular ribbons composed of Li cations bridged by the bidentate carboxyl­ate groups and bridged by bidentate nitrate anions form mol­ecular layers. An inter­esting feature is the absence of any N,O chelating bonding to the metal ion. The structural motif in the remaining complex (Starosta & Leciejewicz, 2012) consists of a mol­ecular chain similar to that in the title compound. In this structure, the chains are bridged by pairs of aqua-coordinated Li ions inter-connected by an aqua O atom. The tetra­hedral coordination of each of these Li cations is completed by two carboxyl­ate O atoms acting in a bidentate mode and donated by the ligands belonging to adjacent chains. The charge of the resulting cationic ribbon is compensated by the inter­spersed chloride anions.

Synthesis and crystallization  

50 ml of an aqueous solution containing 1 mmol of pyrimidine-2-carbo­nitrile and 5 mmol of LiOH was boiled under reflux for 20 h with constant stirring. After cooling to room temperature, the solution was filtered and titrated with 0.1 N acetic acid until the pH reached ca 6.5, then stirred at 320 K for 3 h and left to evaporate slowly at room temperature. The residue was redissolved in a 1:1 ethanol–water mixture and left to crystallize at room temperature. After a few days, block-shaped single crystal of the title compound were extracted, washed with cold methanol and dried in the air.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms bonded to pyridine-ring C atoms were placed at calculated positions with C—H = 0.93 Å and treated as riding on the parent atoms with U iso(H) = 1.2U eq(C). The H atoms of water mol­ecules were found from the Fourier map and refined isotropically.

Table 3. Experimental details.

Crystal data
Chemical formula [Li(C5H3N2O2)(H2O)]0.5H2O
M r 157.06
Crystal system, space group Monoclinic, P21
Temperature (K) 293
a, b, c () 10.4965(5), 12.8118(6), 10.8810(4)
() 107.771(5)
V (3) 1393.45(11)
Z 8
Radiation type Cu K
(mm1) 1.07
Crystal size (mm) 0.17 0.08 0.05
 
Data collection
Diffractometer Agilent CCD Xcalibur Ruby
Absorption correction Analytical [CrysAlis PRO (Agilent, 2014), based on expressions derived by Clark Reid (1995)]
T min, T max 0.894, 0.952
No. of measured, independent and observed [I > 2(I)] reflections 10782, 5237, 3736
R int 0.056
(sin /)max (1) 0.614
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.061, 0.177, 0.98
No. of reflections 5237
No. of parameters 451
No. of restraints 20
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
max, min (e 3) 0.35, 0.23

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXS2014 and SHELXL2014 (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989014026735/bg2542sup1.cif

e-71-00076-sup1.cif (382.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014026735/bg2542Isup2.hkl

e-71-00076-Isup2.hkl (287.1KB, hkl)

CCDC reference: 1037774

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[Li(C5H3N2O2)(H2O)]·0.5H2O F(000) = 648
Mr = 157.06 Dx = 1.497 Mg m3
Monoclinic, P21 Cu Kα radiation, λ = 1.54184 Å
a = 10.4965 (5) Å Cell parameters from 2423 reflections
b = 12.8118 (6) Å θ = 4.4–70.6°
c = 10.8810 (4) Å µ = 1.07 mm1
β = 107.771 (5)° T = 293 K
V = 1393.45 (11) Å3 Block, colourless
Z = 8 0.17 × 0.08 × 0.05 mm

Data collection

Agilent CCD Xcalibur Ruby diffractometer 5237 independent reflections
Radiation source: Enhance (Cu) X-ray Source 3736 reflections with I > 2σ(I)
Detector resolution: 10.4922 pixels mm-1 Rint = 0.056
ω scans θmax = 71.2°, θmin = 4.3°
Absorption correction: analytical [CrysAlis PRO (Agilent, 2014), based on expressions derived by Clark & Reid (1995)] h = −11→12
Tmin = 0.894, Tmax = 0.952 k = −15→15
10782 measured reflections l = −13→12

Refinement

Refinement on F2 20 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.061 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.177 w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3
S = 0.98 (Δ/σ)max = 0.004
5237 reflections Δρmax = 0.35 e Å3
451 parameters Δρmin = −0.23 e Å3

Special details

Experimental. Absorption correction: Agilent (2014). Clark & Reid (1995). Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Li1 0.5210 (11) 0.0381 (10) 0.3508 (8) 0.054 (3)
Li2 0.5170 (10) −0.0392 (9) −0.1441 (8) 0.046 (2)
Li3 0.0814 (10) 0.2948 (9) 0.8783 (8) 0.047 (2)
Li4 0.0921 (9) 0.2019 (9) 0.3830 (7) 0.043 (2)
C12 0.4379 (6) 0.0069 (5) 0.0797 (5) 0.0384 (12)
C14 0.2428 (6) 0.0067 (6) −0.0846 (6) 0.0529 (15)
H14 0.1963 0.0069 −0.1723 0.064*
C15 0.1725 (7) 0.0078 (6) 0.0028 (6) 0.0530 (16)
H15 0.0795 0.0100 −0.0239 0.064*
C16 0.2446 (6) 0.0055 (6) 0.1314 (6) 0.0489 (15)
H16 0.1994 0.0029 0.1927 0.059*
C17 0.5892 (6) 0.0064 (5) 0.1248 (5) 0.0378 (13)
C22 0.5980 (6) −0.0002 (5) 0.6247 (5) 0.0370 (12)
C24 0.7913 (7) 0.0111 (6) 0.5742 (6) 0.0537 (16)
H24 0.8369 0.0147 0.5132 0.064*
C25 0.8632 (7) 0.0101 (6) 0.7026 (6) 0.0569 (16)
H25 0.9561 0.0141 0.7299 0.068*
C26 0.7921 (6) 0.0029 (6) 0.7891 (5) 0.0503 (15)
H26 0.8387 0.0013 0.8768 0.060*
C27 0.4461 (6) −0.0097 (5) 0.5817 (5) 0.0392 (14)
C32 0.1661 (6) 0.2465 (4) 0.6557 (5) 0.0380 (12)
C34 0.3599 (7) 0.2476 (7) 0.6072 (6) 0.0625 (19)
H34 0.4067 0.2477 0.5471 0.075*
C35 0.4314 (7) 0.2511 (7) 0.7353 (6) 0.0598 (18)
H35 0.5244 0.2529 0.7632 0.072*
C36 0.3584 (6) 0.2519 (6) 0.8201 (5) 0.0530 (15)
H36 0.4038 0.2534 0.9081 0.064*
C37 0.0137 (7) 0.2451 (5) 0.6084 (5) 0.0410 (14)
C42 0.0088 (6) 0.2435 (5) 1.1091 (5) 0.0365 (13)
C44 −0.1857 (6) 0.2422 (5) 0.9473 (5) 0.0472 (14)
H44 −0.2328 0.2457 0.8598 0.057*
C45 −0.2559 (7) 0.2292 (6) 1.0347 (7) 0.0531 (16)
H45 −0.3487 0.2239 1.0082 0.064*
C46 −0.1812 (7) 0.2244 (6) 1.1641 (6) 0.0484 (16)
H46 −0.2253 0.2164 1.2259 0.058*
C47 0.1617 (6) 0.2510 (5) 1.1531 (5) 0.0380 (13)
O1 −0.3233 (5) 0.2775 (4) 0.5971 (5) 0.0595 (11)
H11 −0.240 (3) 0.263 (5) 0.608 (8) 0.071*
H12 −0.327 (6) 0.3439 (15) 0.586 (8) 0.071*
O2 0.1225 (5) 0.9356 (4) 0.6054 (4) 0.0590 (12)
H21 0.120 (6) 0.8692 (15) 0.593 (8) 0.071*
H22 0.205 (3) 0.952 (5) 0.619 (8) 0.071*
O11 0.6455 (4) 0.0173 (4) 0.2421 (4) 0.0535 (12)
O12 0.6448 (4) −0.0058 (4) 0.0388 (4) 0.0508 (11)
O13 0.5044 (5) 0.1941 (4) 0.3601 (4) 0.0530 (11)
H131 0.431 (3) 0.225 (5) 0.3553 (17) 0.064*
H132 0.563 (4) 0.226 (5) 0.422 (5) 0.064*
O21 0.3915 (5) −0.0202 (4) 0.6665 (4) 0.0539 (13)
O22 0.3905 (4) −0.0051 (4) 0.4616 (4) 0.0513 (11)
O23 0.5207 (4) −0.1946 (4) −0.1316 (4) 0.0498 (11)
H231 0.6051 (18) −0.207 (6) −0.113 (5) 0.060*
H232 0.487 (5) −0.225 (5) −0.205 (4) 0.060*
O31 −0.0433 (4) 0.2566 (4) 0.6921 (4) 0.0510 (11)
O32 −0.0389 (4) 0.2317 (4) 0.4901 (4) 0.0514 (11)
O33 0.0834 (5) 0.4508 (4) 0.8678 (4) 0.0516 (12)
H331 0.166 (2) 0.471 (5) 0.889 (6) 0.062*
H332 0.043 (5) 0.495 (4) 0.811 (5) 0.062*
O41 0.2199 (4) 0.2372 (4) 1.2700 (3) 0.0458 (11)
O42 0.2119 (4) 0.2694 (4) 1.0654 (4) 0.0468 (10)
O43 0.1100 (4) 0.0457 (4) 0.3826 (4) 0.0518 (11)
H431 0.1952 (16) 0.038 (6) 0.410 (6) 0.062*
H432 0.082 (5) 0.007 (5) 0.434 (5) 0.062*
N11 0.3768 (5) 0.0070 (5) 0.1701 (4) 0.0422 (12)
N13 0.3764 (5) 0.0054 (4) −0.0470 (4) 0.0439 (11)
N21 0.6594 (5) −0.0019 (4) 0.7526 (4) 0.0445 (11)
N23 0.6582 (5) 0.0071 (5) 0.5341 (4) 0.0476 (12)
N31 0.2263 (5) 0.2508 (4) 0.7826 (4) 0.0429 (11)
N33 0.2279 (5) 0.2440 (5) 0.5641 (5) 0.0505 (13)
N41 −0.0494 (5) 0.2310 (4) 1.2018 (4) 0.0429 (12)
N43 −0.0532 (5) 0.2498 (4) 0.9838 (4) 0.0423 (11)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Li1 0.060 (7) 0.078 (8) 0.027 (5) 0.000 (5) 0.020 (5) 0.001 (4)
Li2 0.046 (6) 0.069 (7) 0.029 (4) 0.001 (4) 0.019 (4) −0.002 (4)
Li3 0.046 (6) 0.075 (7) 0.025 (4) −0.005 (5) 0.017 (4) −0.005 (4)
Li4 0.040 (5) 0.064 (6) 0.027 (4) 0.003 (4) 0.010 (4) 0.003 (4)
C12 0.046 (3) 0.042 (3) 0.028 (2) 0.003 (3) 0.013 (2) −0.002 (2)
C14 0.045 (3) 0.076 (4) 0.033 (3) 0.008 (3) 0.005 (2) −0.004 (3)
C15 0.036 (3) 0.080 (5) 0.041 (3) 0.003 (3) 0.009 (3) −0.006 (3)
C16 0.043 (3) 0.069 (4) 0.041 (3) −0.001 (3) 0.022 (3) −0.006 (3)
C17 0.044 (3) 0.047 (3) 0.025 (2) 0.001 (3) 0.014 (2) 0.001 (2)
C22 0.045 (3) 0.046 (3) 0.022 (2) 0.000 (3) 0.014 (2) 0.000 (2)
C24 0.041 (3) 0.081 (4) 0.046 (3) 0.002 (3) 0.023 (3) 0.009 (3)
C25 0.036 (3) 0.087 (5) 0.044 (3) 0.000 (3) 0.007 (3) 0.008 (3)
C26 0.044 (3) 0.072 (4) 0.028 (3) −0.006 (3) 0.002 (2) 0.002 (3)
C27 0.040 (3) 0.053 (4) 0.024 (3) 0.003 (3) 0.009 (2) 0.000 (2)
C32 0.042 (3) 0.047 (3) 0.025 (2) −0.002 (2) 0.011 (2) 0.000 (2)
C34 0.048 (4) 0.106 (6) 0.042 (3) −0.002 (4) 0.025 (3) −0.010 (3)
C35 0.040 (3) 0.090 (5) 0.047 (3) 0.000 (3) 0.009 (3) −0.014 (3)
C36 0.046 (3) 0.080 (4) 0.031 (2) 0.002 (3) 0.007 (2) −0.007 (3)
C37 0.044 (3) 0.054 (4) 0.026 (3) 0.000 (3) 0.013 (2) −0.003 (2)
C42 0.038 (3) 0.045 (3) 0.027 (2) 0.000 (2) 0.010 (2) 0.000 (2)
C44 0.041 (3) 0.065 (4) 0.031 (3) −0.002 (3) 0.005 (2) 0.002 (3)
C45 0.035 (3) 0.074 (5) 0.049 (3) −0.001 (3) 0.012 (3) 0.004 (3)
C46 0.043 (4) 0.072 (4) 0.033 (3) −0.001 (3) 0.015 (3) 0.003 (3)
C47 0.040 (3) 0.048 (3) 0.027 (2) 0.001 (2) 0.011 (2) 0.000 (2)
O1 0.042 (2) 0.076 (3) 0.058 (3) 0.003 (2) 0.012 (2) 0.000 (2)
O2 0.051 (3) 0.080 (3) 0.047 (2) −0.009 (2) 0.017 (2) −0.002 (2)
O11 0.044 (2) 0.085 (3) 0.0309 (19) −0.003 (2) 0.0103 (18) −0.006 (2)
O12 0.040 (2) 0.081 (3) 0.0329 (19) −0.001 (2) 0.0146 (17) −0.005 (2)
O13 0.055 (3) 0.063 (3) 0.040 (2) 0.002 (2) 0.014 (2) −0.0012 (18)
O21 0.040 (2) 0.092 (4) 0.031 (2) −0.005 (2) 0.0123 (18) 0.004 (2)
O22 0.043 (2) 0.080 (3) 0.0290 (19) −0.004 (2) 0.0082 (17) 0.0042 (19)
O23 0.037 (2) 0.081 (3) 0.0319 (19) 0.001 (2) 0.0114 (18) −0.0022 (19)
O31 0.040 (2) 0.080 (3) 0.0360 (19) −0.006 (2) 0.0154 (18) −0.006 (2)
O32 0.041 (2) 0.081 (3) 0.0313 (19) 0.003 (2) 0.0094 (17) −0.0048 (19)
O33 0.047 (3) 0.063 (3) 0.044 (2) −0.001 (2) 0.013 (2) 0.0030 (19)
O41 0.038 (2) 0.071 (3) 0.0282 (19) 0.001 (2) 0.0091 (17) 0.0032 (18)
O42 0.038 (2) 0.073 (3) 0.0309 (17) −0.001 (2) 0.0125 (16) 0.0052 (18)
O43 0.051 (2) 0.066 (3) 0.040 (2) 0.004 (2) 0.017 (2) 0.0062 (18)
N11 0.043 (3) 0.061 (3) 0.024 (2) −0.004 (2) 0.012 (2) −0.004 (2)
N13 0.044 (3) 0.061 (3) 0.027 (2) 0.002 (2) 0.011 (2) −0.003 (2)
N21 0.040 (3) 0.065 (3) 0.027 (2) −0.004 (2) 0.0085 (19) 0.000 (2)
N23 0.047 (3) 0.065 (3) 0.032 (2) 0.003 (3) 0.013 (2) 0.002 (2)
N31 0.043 (3) 0.063 (3) 0.023 (2) 0.004 (2) 0.0103 (19) −0.001 (2)
N33 0.046 (3) 0.079 (4) 0.031 (2) 0.000 (3) 0.017 (2) −0.004 (2)
N41 0.038 (3) 0.066 (3) 0.027 (2) 0.000 (2) 0.014 (2) 0.003 (2)
N43 0.041 (2) 0.058 (3) 0.028 (2) 0.002 (2) 0.011 (2) 0.002 (2)

Geometric parameters (Å, º)

Li1—O13 2.012 (14) C27—O21 1.233 (7)
Li1—O11 2.030 (10) C27—O22 1.260 (7)
Li1—N23 2.111 (11) C32—N31 1.333 (7)
Li1—N11 2.121 (11) C32—N33 1.345 (7)
Li1—O22 2.154 (10) C32—C37 1.524 (9)
Li2—O23 1.996 (12) C34—N33 1.321 (9)
Li2—O12 2.077 (10) C34—C35 1.368 (9)
Li2—O21i 2.094 (10) C34—H34 0.9300
Li2—N13 2.138 (9) C35—C36 1.367 (9)
Li2—N21i 2.180 (9) C35—H35 0.9300
Li3—O33 2.002 (13) C36—N31 1.321 (8)
Li3—O31 2.107 (10) C36—H36 0.9300
Li3—O42 2.103 (10) C37—O31 1.242 (8)
Li3—N43 2.154 (9) C37—O32 1.248 (7)
Li3—N31 2.164 (9) C42—N43 1.322 (7)
Li4—O43 2.010 (12) C42—N41 1.339 (8)
Li4—O32 2.092 (9) C42—C47 1.531 (8)
Li4—N41i 2.107 (10) C44—N43 1.328 (8)
Li4—N33 2.120 (10) C44—C45 1.379 (9)
Li4—O41i 2.126 (9) C44—H44 0.9300
C12—N11 1.327 (8) C45—C46 1.389 (9)
C12—N13 1.332 (7) C45—H45 0.9300
C12—C17 1.512 (8) C46—N41 1.321 (8)
C14—N13 1.336 (8) C46—H46 0.9300
C14—C15 1.370 (9) C47—O42 1.246 (7)
C14—H14 0.9300 C47—O41 1.244 (7)
C15—C16 1.372 (9) O1—H11 0.861 (15)
C15—H15 0.9300 O1—H12 0.859 (15)
C16—N11 1.322 (8) O2—H21 0.861 (15)
C16—H16 0.9300 O2—H22 0.857 (15)
C17—O11 1.240 (7) O13—H131 0.857 (14)
C17—O12 1.255 (7) O13—H132 0.864 (15)
C22—N23 1.327 (7) O21—Li2ii 2.094 (10)
C22—N21 1.343 (7) O23—H231 0.861 (14)
C22—C27 1.523 (8) O23—H232 0.857 (15)
C24—N23 1.332 (8) O33—H331 0.863 (15)
C24—C25 1.371 (9) O33—H332 0.854 (15)
C24—H24 0.9300 O41—Li4ii 2.126 (9)
C25—C26 1.371 (9) O43—H431 0.858 (15)
C25—H25 0.9300 O43—H432 0.862 (14)
C26—N21 1.328 (8) N21—Li2ii 2.180 (9)
C26—H26 0.9300 N41—Li4ii 2.107 (10)
O13—Li1—O11 103.9 (5) N33—C34—C35 123.6 (5)
O13—Li1—N23 100.6 (5) N33—C34—H34 118.2
O11—Li1—N23 98.7 (5) C35—C34—H34 118.2
O13—Li1—N11 100.7 (5) C34—C35—C36 116.2 (6)
O11—Li1—N11 80.8 (4) C34—C35—H35 121.9
N23—Li1—N11 158.2 (7) C36—C35—H35 121.9
O13—Li1—O22 98.5 (5) N31—C36—C35 122.9 (5)
O11—Li1—O22 157.6 (7) N31—C36—H36 118.6
N23—Li1—O22 77.9 (3) C35—C36—H36 118.6
N11—Li1—O22 94.3 (5) O31—C37—O32 127.7 (6)
O23—Li2—O12 98.4 (5) O31—C37—C32 116.3 (5)
O23—Li2—O21i 100.1 (5) O32—C37—C32 116.0 (5)
O12—Li2—O21i 161.4 (7) N43—C42—N41 126.2 (6)
O23—Li2—N13 103.6 (5) N43—C42—C47 117.3 (5)
O12—Li2—N13 79.2 (3) N41—C42—C47 116.6 (5)
O21i—Li2—N13 97.7 (4) N43—C44—C45 122.2 (5)
O23—Li2—N21i 104.6 (5) N43—C44—H44 118.9
O12—Li2—N21i 96.0 (4) C45—C44—H44 118.9
O21i—Li2—N21i 78.0 (3) C44—C45—C46 116.8 (6)
N13—Li2—N21i 151.8 (6) C44—C45—H45 121.6
O33—Li3—O31 101.0 (5) C46—C45—H45 121.6
O33—Li3—O42 101.2 (5) N41—C46—C45 121.7 (6)
O31—Li3—O42 157.6 (7) N41—C46—H46 119.1
O33—Li3—N43 108.5 (5) C45—C46—H46 119.1
O31—Li3—N43 97.7 (4) O42—C47—O41 128.3 (6)
O42—Li3—N43 77.4 (3) O42—C47—C42 114.8 (5)
O33—Li3—N31 102.2 (5) O41—C47—C42 116.8 (5)
O31—Li3—N31 78.4 (3) H11—O1—H12 104 (2)
O42—Li3—N31 94.6 (4) H21—O2—H22 104 (2)
N43—Li3—N31 149.2 (6) C17—O11—Li1 115.2 (5)
O43—Li4—O32 105.1 (5) C17—O12—Li2 115.4 (5)
O43—Li4—N41i 102.4 (5) Li1—O13—H131 123 (4)
O32—Li4—N41i 95.4 (4) Li1—O13—H132 117 (4)
O43—Li4—N33 102.6 (5) H131—O13—H132 104 (2)
O32—Li4—N33 78.8 (3) C27—O21—Li2ii 116.9 (5)
N41i—Li4—N33 155.0 (7) C27—O22—Li1 114.9 (5)
O43—Li4—O41i 97.7 (4) Li2—O23—H231 101 (5)
O32—Li4—O41i 157.1 (6) Li2—O23—H232 113 (5)
N41i—Li4—O41i 79.1 (3) H231—O23—H232 104 (2)
N33—Li4—O41i 96.9 (4) C37—O31—Li3 115.8 (5)
N11—C12—N13 125.1 (6) C37—O32—Li4 116.1 (5)
N11—C12—C17 117.2 (5) Li3—O33—H331 108 (4)
N13—C12—C17 117.7 (5) Li3—O33—H332 134 (5)
N13—C14—C15 121.7 (5) H331—O33—H332 104 (2)
N13—C14—H14 119.1 C47—O41—Li4ii 115.0 (5)
C15—C14—H14 119.1 C47—O42—Li3 117.9 (4)
C14—C15—C16 117.4 (6) Li4—O43—H431 102 (5)
C14—C15—H15 121.3 Li4—O43—H432 121 (5)
C16—C15—H15 121.3 H431—O43—H432 103 (2)
N11—C16—C15 121.6 (5) C16—N11—C12 117.5 (5)
N11—C16—H16 119.2 C16—N11—Li1 132.9 (5)
C15—C16—H16 119.2 C12—N11—Li1 108.5 (5)
O11—C17—O12 126.7 (6) C12—N13—C14 116.6 (5)
O11—C17—C12 117.2 (5) C12—N13—Li2 109.0 (5)
O12—C17—C12 116.1 (5) C14—N13—Li2 132.1 (5)
N23—C22—N21 125.7 (5) C26—N21—C22 115.9 (5)
N23—C22—C27 117.9 (4) C26—N21—Li2ii 132.6 (4)
N21—C22—C27 116.4 (4) C22—N21—Li2ii 110.5 (5)
N23—C24—C25 122.0 (5) C24—N23—C22 116.7 (5)
N23—C24—H24 119.0 C24—N23—Li1 130.3 (5)
C25—C24—H24 119.0 C22—N23—Li1 111.9 (5)
C26—C25—C24 117.0 (6) C36—N31—C32 116.2 (5)
C26—C25—H25 121.5 C36—N31—Li3 132.4 (4)
C24—C25—H25 121.5 C32—N31—Li3 109.2 (4)
N21—C26—C25 122.6 (5) C34—N33—C32 115.3 (5)
N21—C26—H26 118.7 C34—N33—Li4 132.3 (5)
C25—C26—H26 118.7 C32—N33—Li4 110.9 (4)
O21—C27—O22 127.4 (6) C46—N41—C42 116.7 (5)
O21—C27—C22 117.4 (5) C46—N41—Li4ii 130.7 (5)
O22—C27—C22 115.2 (5) C42—N41—Li4ii 111.9 (5)
N31—C32—N33 125.8 (5) C42—N43—C44 116.5 (5)
N31—C32—C37 117.9 (5) C42—N43—Li3 111.7 (5)
N33—C32—C37 116.3 (5) C44—N43—Li3 131.1 (4)

Symmetry codes: (i) x, y, z−1; (ii) x, y, z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H11···O31 0.86 (2) 1.99 (3) 2.814 (7) 159 (8)
O1—H12···O22iii 0.86 (2) 2.06 (2) 2.897 (8) 164 (6)
O2—H21···O32iii 0.86 (2) 2.04 (3) 2.849 (7) 155 (7)
O2—H22···O21iv 0.86 (2) 1.90 (2) 2.755 (7) 174 (8)
O13—H131···O41i 0.86 (1) 2.13 (3) 2.898 (6) 149 (4)
O13—H132···O1v 0.86 (2) 2.02 (3) 2.867 (6) 165 (7)
O23—H232···O13vi 0.86 (2) 2.01 (3) 2.807 (6) 154 (5)
O33—H331···O12vii 0.86 (2) 1.93 (2) 2.777 (7) 169 (6)
O33—H332···O43iii 0.85 (2) 2.31 (3) 3.106 (6) 154 (6)
O43—H431···O22 0.86 (2) 2.03 (2) 2.879 (6) 170 (7)
O43—H432···O2viii 0.86 (1) 2.00 (4) 2.773 (6) 148 (5)
O23—H231···O42ix 0.86 (1) 1.86 (2) 2.715 (6) 177 (5)

Symmetry codes: (i) x, y, z−1; (iii) −x, y+1/2, −z+1; (iv) x, y+1, z; (v) x+1, y, z; (vi) −x+1, y−1/2, −z; (vii) −x+1, y+1/2, −z+1; (viii) x, y−1, z; (ix) −x+1, y−1/2, −z+1.

References

  1. Agilent (2014). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.
  2. Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.
  3. Colacio, E., Aouryaghal, H., Mota, A. J., Cano, J., Sillanpää, R. & Rodríguez-Diéguez, A. (2009). CrystEngComm, 11, 2054–2064.
  4. Kokunov, Yu. V. & Gorbunova, Yu. E. (2007). Zh. Neorg. Khim 52, 1632–1637.
  5. Rodríguez-Diéguez, A., Aouryaghal, H., Mota, A. J. & Colacio, E. (2008). Acta Cryst. E64, m618. [DOI] [PMC free article] [PubMed]
  6. Rodríguez-Diéguez, A., Cano, J., Kivekäs, R., Debdoubi, A. & Colacio, E. (2007). Inorg. Chem. 46, 2503–2510. [DOI] [PubMed]
  7. Sava, D. F., Kravtsov, V. Ch., Nouar, F., Wojtas, L., Eubank, J. F. & Eddaoudi, M. (2008). J. Am. Chem. Soc. 130, 3768–3770. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Starosta, W. & Leciejewicz, J. (2011). Acta Cryst. E67, m818. [DOI] [PMC free article] [PubMed]
  10. Starosta, W. & Leciejewicz, J. (2012). Acta Cryst. E68, m1369–m1370. [DOI] [PMC free article] [PubMed]
  11. Suárez-Varela, J., Mota, A. J., Aouryaghal, H., Cano, J., Rodríguez-Diéguez, A., Luneau, D. & Colacio, E. (2008). Inorg. Chem. 47, 8143–8158. [DOI] [PubMed]
  12. Zhang, J.-Y., Cheng, A.-L., Yue, Q., Sun, W.-W. & Ga, E.-Q. (2008a). Chem. Commun. pp. 847–849. [DOI] [PubMed]
  13. Zhang, J.-Y., Ma, Y., Cheng, A.-L., Yue, Q., Sun, Q. & Gao, E.-Q. (2008b). Dalton Trans. pp. 2061–2068. [DOI] [PubMed]
  14. Zhang, B.-Y., Yang, Q. & Nie, J.-J. (2008c). Acta Cryst. E64, m7. [DOI] [PMC free article] [PubMed]
  15. Zhao, J.-P. & Liu, F.-C. (2010). Acta Cryst. E66, m1059. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989014026735/bg2542sup1.cif

e-71-00076-sup1.cif (382.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014026735/bg2542Isup2.hkl

e-71-00076-Isup2.hkl (287.1KB, hkl)

CCDC reference: 1037774

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES