Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 1;71(Pt 1):m12–m13. doi: 10.1107/S2056989014027339

Crystal structure of bis­(3-bromo­pyridine-κN)bis­(O-ethyl di­thio­carbonato-κ2 S,S′)nickel(II)

Rajni Kant a,*, Gurvinder Kour a, Sumati Anthal a, Neerupama b, Renu Sachar b
PMCID: PMC4331872  PMID: 25705471

Abstract

In the title mol­ecular complex, [Ni(C3H5OS2)2(C5H4BrN)2], the Ni2+ cation is located on a centre of inversion and has a distorted octa­hedral N2S4 environment defined by two chelating xanthate ligands and two monodentate pyridine ligands. The C—S bond lengths of the thio­carboxyl­ate group are indicative of a delocalized bond and the O—Csp 2 bond is considerably shorter than the O—Csp 3 bond, consistent with a significant contribution of one resonance form of the xanthate anion that features a formal C=O+ unit and a negative charge on each of the S atoms. The packing of the mol­ecules is stabilized by C—H⋯S and C—H⋯π inter­actions. In addition, π–π inter­actions between the pyridine rings [centroid-to-centroid distance = 3.797 (3) Å] are also present. In the crystal structure, mol­ecules are arranged in rows along [100], forming layers parallel to (010) and (001).

Keywords: Crystal structure, nickel complex, xanthate ligands, π–π inter­actions, crystal structure

Related literature  

Xanthates as ligands have been investigated extensively due to their coordination behaviour (Haiduc et al., 1995), thereby showing monodentate and/or bidentate coordination modes (Xiong et al., 1997; Trávnícek et al., 1995). Xanthates have also found uses as anti­tumour agents and in the treatment of Alzheimer’s disease (Orts et al., 2002; Larsson & Öberg, 2011). For other analogous Ni–di­thio­carboxyl­ate complexes, see: Kapoor et al. (2012). For C—S and C—O bond lengths in other xanthates, see: Jiang et al. (2002); Alam et al. (2011).graphic file with name e-71-00m12-scheme1.jpg

Experimental  

Crystal data  

  • [Ni(C3H5OS2)2(C5H4BrN)2]

  • M r = 617.09

  • Triclinic, Inline graphic

  • a = 6.8397 (7) Å

  • b = 9.1952 (8) Å

  • c = 9.7562 (10) Å

  • α = 76.121 (8)°

  • β = 73.935 (9)°

  • γ = 78.517 (8)°

  • V = 566.59 (10) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 4.77 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.1 mm

Data collection  

  • Oxford Diffraction Xcalibur CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) T min = 0.489, T max = 1.000

  • 4016 measured reflections

  • 2230 independent reflections

  • 1510 reflections with I > 2σ(I)

  • R int = 0.044

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.112

  • S = 1.03

  • 2230 reflections

  • 126 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.68 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989014027339/wm5101sup1.cif

e-71-00m12-sup1.cif (19.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014027339/wm5101Isup2.hkl

e-71-00m12-Isup2.hkl (107.3KB, hkl)

. DOI: 10.1107/S2056989014027339/wm5101fig1.tif

The mol­ecular structure of the title compound, with the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radius. All non-labelled atoms are related by symmetry code (-x+1, −y, −z).

. DOI: 10.1107/S2056989014027339/wm5101fig2.tif

The packing arrangement of mol­ecules of the title compound viewed down [100].

CCDC reference: 1036070

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths ().

Ni1N1 2.118(4)
Ni1S2 2.4314(12)
Ni1S1 2.4368(12)
S2C6 1.691(5)
S1C6 1.679(5)
C6O1 1.328(5)
C7O1 1.447(5)

Table 2. Hydrogen-bond geometry (, ).

Cg1 is the centroid of the N1/C1/C2/C3/C4/C5 ring.

DHA DH HA D A DHA
C5H5S2i 0.93 2.78 3.642(5) 154
C8H8A Cg1ii 0.96 3.26 3.712(6) 111

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

RK acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003.

supplementary crystallographic information

S1. Experimental

Bis(O-ethyldithiocarbonato)nickel(II) required for preparation of the adduct was obtained by mixing aqueous solutions of the potassium salt of O-ethyldithiocarbonate (3.24 g, 0.02 mol) and NiCl2·6H2O (2.37 g, 0.01 mol). The formed bis(O-ethyldithiocarbonato)nickel(II) precipitate was immediately filtered off and dried in a vacuum desiccator. Bis(O-ethyldithiocarbonato)nickel(II) (0.783 g, 0.0026 mol) was then dissolved in acetone (60 ml) and stirred for about 10–20 minutes. To the resulting solution, 3-bromopyridine (0.82 g, 0.0052 mol) was added. The mixture was stirred for additional two to three hours and kept undisturbed for one to two days when dark green coloured crystals of the adduct had formed. The product so obtained was filtered and dried in vacuum desiccator over anhydrous calcium chloride.

S2. Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å, with Uiso(H) = 1.2Ueq(C), except for the methyl group where Uiso(H) = 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radius. All non-labelled atoms are related by symmetry code (-x+1, -y, -z).

Fig. 2.

Fig. 2.

The packing arrangement of molecules of the title compound viewed down [100].

Crystal data

[Ni(C3H5OS2)2(C5H4BrN)2] Z = 1
Mr = 617.09 F(000) = 306
Triclinic, P1 Dx = 1.809 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.8397 (7) Å Cell parameters from 1227 reflections
b = 9.1952 (8) Å θ = 4.1–27.4°
c = 9.7562 (10) Å µ = 4.77 mm1
α = 76.121 (8)° T = 293 K
β = 73.935 (9)° Block, dark green
γ = 78.517 (8)° 0.3 × 0.2 × 0.1 mm
V = 566.59 (10) Å3

Data collection

Oxford Diffraction Xcalibur CCD diffractometer 2230 independent reflections
Radiation source: fine-focus sealed tube 1510 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.044
ω scans θmax = 26.0°, θmin = 3.6°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) h = −6→8
Tmin = 0.489, Tmax = 1.000 k = −9→11
4016 measured reflections l = −11→12

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049 H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0339P)2] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
2230 reflections Δρmax = 0.67 e Å3
126 parameters Δρmin = −0.68 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0130 (18)

Special details

Experimental. CrysAlis PRO, Agilent Technologies, Version 1.171.36.28 (release 01–02-2013 CrysAlis171. NET) (compiled Feb 1 2013,16:14:44) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.5000 0.0000 0.0000 0.0371 (3)
Br1 0.31297 (11) 0.60432 (7) −0.32487 (8) 0.0877 (3)
S2 0.85033 (18) −0.09955 (15) −0.11048 (14) 0.0456 (4)
S1 0.49994 (18) −0.02146 (15) −0.24413 (14) 0.0451 (4)
C4 0.7696 (8) 0.4151 (6) −0.1093 (6) 0.0552 (15)
H4 0.8821 0.4427 −0.0908 0.066*
C6 0.7488 (7) −0.0893 (5) −0.2527 (5) 0.0418 (12)
C7 0.8014 (8) −0.1290 (6) −0.4944 (5) 0.0540 (15)
H7A 0.7966 −0.0258 −0.5491 0.065*
H7B 0.6644 −0.1570 −0.4674 0.065*
O1 0.8752 (5) −0.1419 (4) −0.3659 (3) 0.0484 (9)
C8 0.9484 (8) −0.2339 (7) −0.5834 (6) 0.0742 (19)
H8A 1.0845 −0.2083 −0.6050 0.111*
H8B 0.9089 −0.2248 −0.6724 0.111*
H8C 0.9463 −0.3361 −0.5299 0.111*
C1 0.4523 (7) 0.3245 (5) −0.1639 (5) 0.0450 (13)
H1 0.3439 0.2931 −0.1841 0.054*
C5 0.7205 (7) 0.2725 (6) −0.0545 (6) 0.0474 (13)
H5 0.7986 0.2055 0.0044 0.057*
C2 0.4894 (8) 0.4701 (6) −0.2192 (5) 0.0479 (13)
C3 0.6516 (8) 0.5174 (6) −0.1919 (6) 0.0565 (15)
H3 0.6801 0.6161 −0.2285 0.068*
N1 0.5662 (5) 0.2245 (4) −0.0814 (4) 0.0392 (10)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.0384 (5) 0.0377 (5) 0.0395 (6) 0.0025 (4) −0.0206 (4) −0.0089 (4)
Br1 0.1128 (6) 0.0498 (4) 0.1009 (6) −0.0010 (4) −0.0560 (5) 0.0109 (4)
S2 0.0407 (7) 0.0547 (9) 0.0446 (8) 0.0053 (6) −0.0205 (6) −0.0137 (6)
S1 0.0465 (7) 0.0503 (8) 0.0439 (8) 0.0035 (7) −0.0243 (6) −0.0124 (6)
C4 0.048 (3) 0.057 (4) 0.065 (4) −0.015 (3) −0.002 (3) −0.028 (3)
C6 0.046 (3) 0.042 (3) 0.034 (3) −0.002 (2) −0.008 (2) −0.006 (2)
C7 0.061 (3) 0.064 (4) 0.037 (3) −0.009 (3) −0.008 (3) −0.016 (3)
O1 0.0487 (19) 0.065 (2) 0.033 (2) −0.0033 (18) −0.0124 (16) −0.0125 (18)
C8 0.097 (5) 0.077 (5) 0.049 (4) −0.008 (4) −0.010 (3) −0.026 (3)
C1 0.053 (3) 0.043 (3) 0.044 (3) −0.002 (3) −0.019 (2) −0.011 (3)
C5 0.041 (3) 0.051 (3) 0.054 (3) −0.004 (3) −0.015 (2) −0.015 (3)
C2 0.059 (3) 0.040 (3) 0.041 (3) −0.006 (3) −0.009 (2) −0.006 (2)
C3 0.068 (4) 0.040 (3) 0.061 (4) −0.014 (3) −0.009 (3) −0.010 (3)
N1 0.040 (2) 0.039 (2) 0.043 (3) −0.0020 (19) −0.0167 (19) −0.0109 (19)

Geometric parameters (Å, º)

Ni1—N1i 2.118 (4) C7—C8 1.492 (6)
Ni1—N1 2.118 (4) C7—H7A 0.9700
Ni1—S2i 2.4314 (12) C7—H7B 0.9700
Ni1—S2 2.4314 (12) C8—H8A 0.9600
Ni1—S1 2.4368 (12) C8—H8B 0.9600
Ni1—S1i 2.4368 (12) C8—H8C 0.9600
Br1—C2 1.878 (5) C1—N1 1.344 (5)
S2—C6 1.691 (5) C1—C2 1.364 (7)
S1—C6 1.679 (5) C1—H1 0.9300
C4—C5 1.363 (7) C5—N1 1.331 (6)
C4—C3 1.372 (8) C5—H5 0.9300
C4—H4 0.9300 C2—C3 1.379 (7)
C6—O1 1.328 (5) C3—H3 0.9300
C7—O1 1.447 (5)
N1i—Ni1—N1 180.0 (3) O1—C7—H7B 110.4
N1i—Ni1—S2i 90.75 (10) C8—C7—H7B 110.4
N1—Ni1—S2i 89.25 (10) H7A—C7—H7B 108.6
N1i—Ni1—S2 89.25 (10) C6—O1—C7 118.9 (3)
N1—Ni1—S2 90.75 (10) C7—C8—H8A 109.5
S2i—Ni1—S2 180.00 (8) C7—C8—H8B 109.5
N1i—Ni1—S1 90.29 (11) H8A—C8—H8B 109.5
N1—Ni1—S1 89.71 (11) C7—C8—H8C 109.5
S2i—Ni1—S1 106.15 (4) H8A—C8—H8C 109.5
S2—Ni1—S1 73.85 (4) H8B—C8—H8C 109.5
N1i—Ni1—S1i 89.71 (11) N1—C1—C2 122.6 (5)
N1—Ni1—S1i 90.29 (11) N1—C1—H1 118.7
S2i—Ni1—S1i 73.85 (4) C2—C1—H1 118.7
S2—Ni1—S1i 106.15 (4) N1—C5—C4 123.2 (5)
S1—Ni1—S1i 180.000 (5) N1—C5—H5 118.4
C6—S2—Ni1 82.79 (15) C4—C5—H5 118.4
C6—S1—Ni1 82.87 (17) C1—C2—C3 119.3 (5)
C5—C4—C3 119.3 (5) C1—C2—Br1 119.4 (4)
C5—C4—H4 120.3 C3—C2—Br1 121.2 (4)
C3—C4—H4 120.3 C4—C3—C2 118.2 (5)
O1—C6—S1 123.4 (3) C4—C3—H3 120.9
O1—C6—S2 116.1 (3) C2—C3—H3 120.9
S1—C6—S2 120.5 (3) C5—N1—C1 117.4 (5)
O1—C7—C8 106.8 (4) C5—N1—Ni1 122.2 (3)
O1—C7—H7A 110.4 C1—N1—Ni1 120.5 (3)
C8—C7—H7A 110.4
N1i—Ni1—S2—C6 89.6 (2) N1—C1—C2—Br1 −176.7 (3)
N1—Ni1—S2—C6 −90.4 (2) C5—C4—C3—C2 −1.5 (8)
S1—Ni1—S2—C6 −0.95 (18) C1—C2—C3—C4 −0.1 (7)
S1i—Ni1—S2—C6 179.05 (18) Br1—C2—C3—C4 177.5 (4)
N1i—Ni1—S1—C6 −88.2 (2) C4—C5—N1—C1 −1.6 (7)
N1—Ni1—S1—C6 91.8 (2) C4—C5—N1—Ni1 178.0 (4)
S2i—Ni1—S1—C6 −179.04 (18) C2—C1—N1—C5 −0.1 (7)
S2—Ni1—S1—C6 0.96 (18) C2—C1—N1—Ni1 −179.8 (3)
Ni1—S1—C6—O1 176.2 (4) S2i—Ni1—N1—C5 125.0 (3)
Ni1—S1—C6—S2 −1.5 (3) S2—Ni1—N1—C5 −55.0 (3)
Ni1—S2—C6—O1 −176.4 (4) S1—Ni1—N1—C5 −128.9 (3)
Ni1—S2—C6—S1 1.5 (3) S1i—Ni1—N1—C5 51.1 (3)
S1—C6—O1—C7 5.5 (6) S2i—Ni1—N1—C1 −55.4 (3)
S2—C6—O1—C7 −176.7 (4) S2—Ni1—N1—C1 124.6 (3)
C8—C7—O1—C6 −164.0 (5) S1—Ni1—N1—C1 50.8 (3)
C3—C4—C5—N1 2.5 (8) S1i—Ni1—N1—C1 −129.2 (3)
N1—C1—C2—C3 1.0 (7)

Symmetry code: (i) −x+1, −y, −z.

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the N1/C1/C2/C3/C4/C5 ring.

D—H···A D—H H···A D···A D—H···A
C5—H5···S2ii 0.93 2.78 3.642 (5) 154
C8—H8A···Cg1iii 0.96 3.26 3.712 (6) 111

Symmetry codes: (ii) −x+2, −y, −z; (iii) −x+2, −y, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: WM5101).

References

  1. Alam, N., Ehsan, M. A., Zeller, M., Mazhar, M. & Arifin, Z. (2011). Acta Cryst. E67, m1064. [DOI] [PMC free article] [PubMed]
  2. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  3. Haiduc, I., Sowerby, D. B. & Lu, S. F. (1995). Polyhedron, 14, 3389–3472.
  4. Jiang, X. H., Zhang, W. G., Zhong, Y. & Wang, S. L. (2002). Molecules, 7, 549–553.
  5. Kapoor, S., Sachar, R., Singh, K., Gupta, V. K. & Rajnikant, V. (2012). J. Chem. Crystallogr. 42, 222–226.
  6. Larsson, A. C. & Öberg, S. (2011). J. Phys. Chem. A, 115, 1396–1407. [DOI] [PubMed]
  7. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
  8. Orts, W. J., Sojka, R. E. & Glenn, G. M. (2002). Agro Food Ind. 13, 37–41.
  9. Oxford Diffraction (2010). CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Trávnícek, Z., Pastorek, R., Sindelár, Z., Klicka, R. & Marek, J. (1995). Polyhedron, 14, 3627–3633.
  13. Xiong, R.-G., Zh, Y., Liu, C.-M. & You, X.-Z. (1997). Polyhedron, 16, 2667–2671.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989014027339/wm5101sup1.cif

e-71-00m12-sup1.cif (19.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014027339/wm5101Isup2.hkl

e-71-00m12-Isup2.hkl (107.3KB, hkl)

. DOI: 10.1107/S2056989014027339/wm5101fig1.tif

The mol­ecular structure of the title compound, with the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radius. All non-labelled atoms are related by symmetry code (-x+1, −y, −z).

. DOI: 10.1107/S2056989014027339/wm5101fig2.tif

The packing arrangement of mol­ecules of the title compound viewed down [100].

CCDC reference: 1036070

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES