Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 1;71(Pt 1):o19. doi: 10.1107/S2056989014026164

Crystal structure of 2,2-di­chloro-1-(piperidin-1-yl)butane-1,3-dione

Markus Schwierz a, Helmar Görls b, Wolfgang Imhof a,*
PMCID: PMC4331874  PMID: 25705483

Abstract

In the title compound, C9H13Cl2NO2, the piperidine ring shows a chair conformation and the O—C—C—O torsion angle between the carbonyl groups is 183.6 (4)°. In the crystal, mol­ecules are linked into an infinite layer along the ab plane by a bifurcated C—H⋯O hydrogen bond between the carbonyl O atom adjacent to the methyl group and one of the methyl­ene groups next to nitro­gen and an additional hydrogen bond of the C—H⋯Cl type. These layers are connected into a three-dimensional supra­molecular arrangement by O⋯Cl contacts [2.8979 (12) and 3.1300 (12) Å].

Keywords: crystal structure; 2,2-di­chloro-1-(piperidin-1-yl)butane-1,3-dione; hydrogen bonding; O⋯Cl contacts

Related literature  

For the synthetic procedure, see: Schank (1967). For a survey concerning weak hydrogen bonds, see: Desiraju & Steiner (1999). For a description of the nature of inter­molecular inter­actions between chlorine and oxygen, see: Lommerse et al. (1996). For the X-ray structure of the starting compound, see: Schwierz et al. (2014).graphic file with name e-71-00o19-scheme1.jpg

Experimental  

Crystal data  

  • C9H13Cl2NO2

  • M r = 238.10

  • Monoclinic, Inline graphic

  • a = 5.9548 (3) Å

  • b = 10.5510 (4) Å

  • c = 8.5747 (3) Å

  • β = 100.568 (2)°

  • V = 529.60 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 133 K

  • 0.07 × 0.05 × 0.02 mm

Data collection  

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002) T min = 0.616, T max = 0.746

  • 3076 measured reflections

  • 2402 independent reflections

  • 2085 reflections with I > 2σ(I)

  • R int = 0.030

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.024

  • wR(F 2) = 0.059

  • S = 1.09

  • 2402 reflections

  • 128 parameters

  • 1 restraint

  • All H-atom parameters refined

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983), 1115 Friedel pairs

  • Absolute structure parameter: 0.08 (4)

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989014026164/hg5420sup1.cif

e-71-00o19-sup1.cif (19.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014026164/hg5420Isup2.hkl

e-71-00o19-Isup2.hkl (118KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014026164/hg5420Isup3.cml

. DOI: 10.1107/S2056989014026164/hg5420fig1.tif

Mol­ecular structure of the title compound with thermal ellipsoids drawn at the 50% probability level.

. DOI: 10.1107/S2056989014026164/hg5420fig2.tif

Crystal structure of the title compound showing a 3D supra­molecular network built up by C–H⋯O and C–H⋯Cl hydrogen bonds and chlorine oxygen contacts. Hydrogen atoms at piperidine residues that are not involved in hydrogen bonding are omitted for the sake of clarity.

CCDC reference: 1036594

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C1H1AO1i 0.99 2.56 3.413(2) 145
C9H9CO1i 0.98 2.53 3.494(2) 168
C9H9CCl1ii 0.98 2.79 3.770(2) 176

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

MS gratefully acknowledges a PhD grant from the Deutsche Bundesstiftung Umwelt.

supplementary crystallographic information

S1. Comment

The title compound is an intermediate in the synthesis of 2,2-dimethoxy-1-(pyridin-2-yl)ethanone and has been synthesized from 1-(piperidin-1-yl)butane-1,3-dione (Schwierz et al., 2014) following a modified procedure (Schank, 1967). As it is expected the piperidine ring shows a chair conformation and the amide substructure is planar (Figure 1). The dihedral angle O1—C6—C8—O2 between the carbonyl groups measures to 183.6 (4)°. The C—O bond of the amide carbonyl group is slightly elongated with respect to the other carbonyl group due to delocalization of the nitrogen lone pair (C6—O1 1.221 (3) Å versus. C8—O2 1.205 (3) Å). In the crystal structure, molecules are linked to infinite layers along the ab plane by a bifurcated hydrogen bond between one of the carbonyl oxygen atoms (O1) towards the methyl group and one of the methylene groups next to nitrogen and an additional hydrogen bond of the C—H···Cl type (Desiraju & Steiner, 1999). In addition, these layers are connected to a 3D supramolecular arrangement by oxygen chlorine contacts (Lommerse et al., 1996).

S2. Experimental

25.4 g (0.15 mol) 1-(piperidin-1-yl)butane-1,3-dione were dissolved in 70 ml dichloromethane. To this solution, 24.3 ml (40.6 g, 0.3 mol) sulfuryl dichloride was added dropwise and the resulting mixture refluxed for 5 h. After cooling to room temperature 30 ml diethylether were added and the solution washed with brine (3 ×20 ml), dried over CaCl2, filtered and evaporated to dryness. The resulting highly viscous product was distilled in vacuo (0.2 mbar). Condensation of the distillate into a Schlenk tube cooled with liquid nitrogen yielded crystalline material suitable for X-ray diffraction (Combined yield of all fractions: 32.5 g, 91%).

S3. Refinement

Hydrogen atoms have been calculated into idealized positions with C–H = 0.98 - 0.99 Å . Methylene and methyl hydrogen atoms were refined with Uiso = 1.2 Ueq(C) and 1.5 Ueq(C) respectively.

Figures

Fig. 1.

Fig. 1.

: Molecular structure of the title compound with thermal ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

: Crystal structure of the title compound showing a 3D supramolecular network built up by C–H···O and C–H···Cl hydrogen bonds and chlorine oxygen contacts. Hydrogen atoms at piperidine residues that are not involved in hydrogen bonding are omitted for the sake of clarity.

Crystal data

C9H13Cl2NO2 Z = 2
Mr = 238.10 F(000) = 248
Monoclinic, P21 Dx = 1.493 Mg m3
Hall symbol: P 2yb Mo Kα radiation, λ = 0.71073 Å
a = 5.9548 (3) Å µ = 0.59 mm1
b = 10.5510 (4) Å T = 133 K
c = 8.5747 (3) Å Prism, colourless
β = 100.568 (2)° 0.07 × 0.05 × 0.02 mm
V = 529.60 (4) Å3

Data collection

Nonius KappaCCD diffractometer 2402 independent reflections
Radiation source: fine-focus sealed tube 2085 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.030
phi– + ω–scan θmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2002) h = −5→7
Tmin = 0.616, Tmax = 0.746 k = −13→13
3076 measured reflections l = −11→11

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.024 All H-atom parameters refined
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.0215P)2 + 0.1164P] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max = 0.001
2402 reflections Δρmax = 0.33 e Å3
128 parameters Δρmin = −0.21 e Å3
1 restraint Absolute structure: Flack (1983), 1115 Friedel pairs
Primary atom site location: structure-invariant direct methods Absolute structure parameter: 0.08 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 1.44673 (6) 0.94886 (3) 0.75108 (4) 0.01711 (9)
Cl2 0.97291 (6) 1.00243 (3) 0.62597 (4) 0.01824 (9)
O1 0.9936 (2) 1.00543 (12) 0.95581 (13) 0.0203 (2)
O2 1.2365 (2) 0.72093 (11) 0.60201 (14) 0.0228 (3)
N1 1.2241 (2) 0.83853 (12) 1.03862 (15) 0.0149 (3)
C1 1.3935 (3) 0.73987 (14) 1.02007 (18) 0.0156 (3)
H1A 1.4037 0.7314 0.9066 0.019*
H1B 1.3440 0.6574 1.0572 0.019*
C2 1.6274 (3) 0.77486 (15) 1.11579 (19) 0.0183 (3)
H2A 1.6857 0.8511 1.0689 0.022*
H2B 1.7358 0.7046 1.1101 0.022*
C3 1.6153 (3) 0.80114 (17) 1.28938 (19) 0.0211 (3)
H3A 1.5787 0.7217 1.3409 0.025*
H3B 1.7656 0.8316 1.3458 0.025*
C4 1.4336 (3) 0.90029 (16) 1.30135 (19) 0.0208 (3)
H4A 1.4784 0.9824 1.2603 0.025*
H4B 1.4203 0.9120 1.4139 0.025*
C5 1.2036 (3) 0.85828 (15) 1.20554 (18) 0.0183 (3)
H5A 1.1546 0.7785 1.2501 0.022*
H5B 1.0867 0.9238 1.2120 0.022*
C6 1.1183 (3) 0.91946 (13) 0.92819 (18) 0.0140 (3)
C7 1.1618 (3) 0.90173 (14) 0.75549 (18) 0.0145 (3)
C8 1.1108 (3) 0.76732 (14) 0.68101 (18) 0.0160 (3)
C9 0.8979 (3) 0.70565 (15) 0.7144 (2) 0.0202 (3)
H9D 0.8409 0.6448 0.6300 0.030*
H9C 0.7814 0.7705 0.7187 0.030*
H9B 0.9321 0.6613 0.8164 0.030*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.01400 (17) 0.01793 (17) 0.02027 (18) −0.00249 (13) 0.00546 (13) −0.00093 (14)
Cl2 0.01831 (18) 0.01753 (16) 0.01794 (17) 0.00204 (14) 0.00086 (13) 0.00373 (14)
O1 0.0207 (6) 0.0196 (5) 0.0218 (5) 0.0062 (5) 0.0069 (5) −0.0008 (5)
O2 0.0234 (6) 0.0232 (6) 0.0229 (6) −0.0011 (5) 0.0071 (5) −0.0076 (5)
N1 0.0130 (6) 0.0157 (6) 0.0162 (6) 0.0009 (5) 0.0030 (5) 0.0001 (5)
C1 0.0147 (7) 0.0140 (7) 0.0177 (8) 0.0028 (6) 0.0020 (6) −0.0007 (5)
C2 0.0133 (7) 0.0199 (7) 0.0212 (8) 0.0014 (6) 0.0019 (6) 0.0002 (6)
C3 0.0184 (8) 0.0259 (8) 0.0178 (8) −0.0008 (6) −0.0001 (6) 0.0001 (6)
C4 0.0226 (9) 0.0232 (8) 0.0171 (7) −0.0012 (7) 0.0050 (6) −0.0035 (6)
C5 0.0179 (8) 0.0221 (8) 0.0160 (7) 0.0006 (6) 0.0062 (6) 0.0011 (6)
C6 0.0101 (7) 0.0151 (7) 0.0169 (7) −0.0040 (5) 0.0026 (6) −0.0014 (5)
C7 0.0115 (7) 0.0153 (7) 0.0172 (7) −0.0009 (6) 0.0041 (6) 0.0009 (6)
C8 0.0169 (8) 0.0148 (7) 0.0152 (7) 0.0004 (6) 0.0001 (6) 0.0008 (6)
C9 0.0187 (8) 0.0177 (7) 0.0246 (8) −0.0040 (7) 0.0047 (7) −0.0016 (6)

Geometric parameters (Å, º)

Cl1—C7 1.7752 (16) C3—H3A 0.9900
Cl2—C7 1.7802 (15) C3—H3B 0.9900
O1—C6 1.2226 (19) C4—C5 1.528 (2)
O2—C8 1.202 (2) C4—H4A 0.9900
N1—C6 1.3431 (19) C4—H4B 0.9900
N1—C5 1.4734 (19) C5—H5A 0.9900
N1—C1 1.4782 (19) C5—H5B 0.9900
C1—C2 1.527 (2) C6—C7 1.561 (2)
C1—H1A 0.9900 C7—C8 1.562 (2)
C1—H1B 0.9900 C8—C9 1.499 (2)
C2—C3 1.529 (2) C9—H9D 0.9800
C2—H2A 0.9900 C9—H9C 0.9800
C2—H2B 0.9900 C9—H9B 0.9800
C3—C4 1.522 (2)
C6—N1—C5 118.90 (12) H4A—C4—H4B 108.2
C6—N1—C1 127.81 (13) N1—C5—C4 109.73 (13)
C5—N1—C1 112.57 (12) N1—C5—H5A 109.7
N1—C1—C2 110.19 (12) C4—C5—H5A 109.7
N1—C1—H1A 109.6 N1—C5—H5B 109.7
C2—C1—H1A 109.6 C4—C5—H5B 109.7
N1—C1—H1B 109.6 H5A—C5—H5B 108.2
C2—C1—H1B 109.6 O1—C6—N1 123.93 (14)
H1A—C1—H1B 108.1 O1—C6—C7 119.03 (13)
C1—C2—C3 111.45 (13) N1—C6—C7 117.04 (12)
C1—C2—H2A 109.3 C6—C7—C8 116.30 (12)
C3—C2—H2A 109.3 C6—C7—Cl1 108.20 (10)
C1—C2—H2B 109.3 C8—C7—Cl1 111.13 (11)
C3—C2—H2B 109.3 C6—C7—Cl2 108.94 (10)
H2A—C2—H2B 108.0 C8—C7—Cl2 103.51 (10)
C4—C3—C2 110.58 (13) Cl1—C7—Cl2 108.45 (8)
C4—C3—H3A 109.5 O2—C8—C9 124.54 (14)
C2—C3—H3A 109.5 O2—C8—C7 120.38 (14)
C4—C3—H3B 109.5 C9—C8—C7 115.07 (13)
C2—C3—H3B 109.5 C8—C9—H9D 109.5
H3A—C3—H3B 108.1 C8—C9—H9C 109.5
C3—C4—C5 110.03 (14) H9D—C9—H9C 109.5
C3—C4—H4A 109.7 C8—C9—H9B 109.5
C5—C4—H4A 109.7 H9D—C9—H9B 109.5
C3—C4—H4B 109.7 H9C—C9—H9B 109.5
C5—C4—H4B 109.7

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C1—H1A···O1i 0.99 2.56 3.413 (2) 145
C9—H9C···O1i 0.98 2.53 3.494 (2) 168
C9—H9C···Cl1ii 0.98 2.79 3.770 (2) 176

Symmetry codes: (i) −x+2, y−1/2, −z+2; (ii) x−1, y, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HG5420).

References

  1. Bruker (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Desiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond. Oxford University Press.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Lommerse, J. P. M., Stone, A. J., Taylor, R. & Allen, F. H. (1996). J. Am. Chem. Soc. 118, 3108–3116.
  6. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  7. Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
  8. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  9. Schank, K. (1967). Chem. Ber. 100, 2292–2295.
  10. Schwierz, M., Görls, H. & Imhof, W. (2014). Acta Cryst. E70, o1297. [DOI] [PMC free article] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989014026164/hg5420sup1.cif

e-71-00o19-sup1.cif (19.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014026164/hg5420Isup2.hkl

e-71-00o19-Isup2.hkl (118KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014026164/hg5420Isup3.cml

. DOI: 10.1107/S2056989014026164/hg5420fig1.tif

Mol­ecular structure of the title compound with thermal ellipsoids drawn at the 50% probability level.

. DOI: 10.1107/S2056989014026164/hg5420fig2.tif

Crystal structure of the title compound showing a 3D supra­molecular network built up by C–H⋯O and C–H⋯Cl hydrogen bonds and chlorine oxygen contacts. Hydrogen atoms at piperidine residues that are not involved in hydrogen bonding are omitted for the sake of clarity.

CCDC reference: 1036594

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES