Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 1;71(Pt 1):85–87. doi: 10.1107/S2056989014026838

Crystal structure of (E)-1-{2-[(5,5-dimethyl-1,3,2-dioxaphosphinan-2-yl)­oxy]naphthalen-1-yl}-N-(4-fluoro­phen­yl)methanimine

Musa A Said a,*, Bayan L Al Belewi a, David L Hughes b,*
PMCID: PMC4331876  PMID: 25705459

In the title compound, the six-membered ring which includes the P atom has a chair conformation and three O atoms are bonded in a trigonal–pyramidal manner to the P atom. In the crystal, mol­ecules are linked via C—H⋯π inter­actions, forming slabs lying parallel to (10Inline graphic).

Keywords: crystal structure; phosphites; 1,3,2-dioxaphosphinan-2-oxy; naphthalene; C—H⋯π inter­actions

Abstract

In the title compound, C22H21FNO3P, a 1,3,2-dioxaphosphinan-2-yloxy derivative, three O atoms are bonded in a trigonal–pyramidal manner to the P atom. The exocyclic P—O bond is significantly longer than the two endocyclic P—O bonds, viz. 1.6678 (12) Å compared to 1.6046 (13) and 1.6096 (12) Å. The six-membered ring which includes the P atom has a chair conformation. The fluoro­phenyl ring is inclined to the naphthalene ring system by 24.42 (7)°. In the crystal, mol­ecules are linked via C—H⋯π inter­actions, forming slabs lying parallel to (10-1).

Chemical context  

Many phospho­rus and/or nitro­gen based ligands bind strongly to transition metals and they offer a wide range of properties and basicities due to the large variety of accessible substituents (Crabtree, 2005; Joslin et al., 2012; Kuehl, 2005; Tolman, 1977). The title compound is an example of a phospho­rus-nitro­gen bidentate ligand. Complexation experiments with such ligands could result in the isolation of mono- or bi-nuclear complexes (van den Beuken et al., 1997). Examples of bidentate ligands with phospho­rus and nitro­gen donor groups bonded to transition metals have been shown to be effective cross-coupling catalysts (Hayashi & Kumada, 1985). The present work is a continuation of the investigation into the synthesis and study of more bi- and tri-cyclic, penta- and hexa-­coordinated phospho­ranes to form anionic, neutral and zwitterionic compounds (Said et al. 1996; Timosheva et al. 2006; Kumara Swamy & Kumar, 2006).graphic file with name e-71-00085-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title compound, Fig. 1, shows that the three oxygen atoms about the phospho­rus atom are bonded in a trigonal pyramidal form. The O—P—O angles are in the range of 96.35 (6) to 102.37 (6)°. The P1—O2 bond length [1.6678 (12) Å] is significantly longer than the other P—O bonds [1.6046 (13) and 1.6096 (12) Å]. The six-membered ring which includes the phospho­rus atom has a chair conformation. The fluoro­phenyl ring is inclined to the naphthalene ring system by 24.42 (7)°. The mol­ecule has an E conformation about the C=N bond (Fig. 1).

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Supra­molecular features  

In the crystal, mol­ecules are linked via C—H⋯π inter­actions (Table 1), forming slabs lying parallel to (10Inline graphic), as shown in Fig. 2.

Table 1. CH interactions (, ).

Cg1 and Cg2 are the centroids of rings C1C4/C9/C10 and C121C126, respectively.

DHA DH HA D A DHA
C4H4Cg1i 0.93 2.70 3.456(2) 140
C35H35C Cg2ii 0.96 2.94 3.878(2) 167

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 2.

Figure 2

A view along the b axis of the crystal packing of the title compound showing the H⋯C contacts (dashed lines) of the C—H⋯π weak interactions (see Table 1 for details).

Synthesis and crystallization  

To 1.02 g (6.05 mmol) of 2-chloro-5,5-dimethyl-1,2,3-dioxaphosphinane in 40 ml of dry di­chloro­methane was added 1.61 g (6.05 mmol) of (E)-1-[(4-fluoro­phenyl­imino)­meth­yl]­naphthalene-2-ol in 10 ml of dry di­chloro­methane. The mixture was refluxed under a slow flow of nitro­gen for 4 h. The solvent was reduced to 5 ml under vacuum and 3 ml of dry n-hexane were added to afford the title compound as a pale-yellow crystalline solid (yield 2.07 g, 86%; m.p. 401–405 K). 1H NMR (CDCl3, 450 MHz): δ 9.16 (s, 1H, CHN), 7.83–7.01 (m, 10H, Ar—H), 4.22 (d, 2H, CH2), 3.40 (t, 2H, CH2), 1.23 (s, 3H, CH3), 0.65 (s, 3H, CH3). 13C NMR (CDCl3, 450 MHz): δ 162.46–115.62 (aromatic carbons), 69.86 (1C, CMe2), 32.95 (2C, CH2), 22.46 (2C, CH3). 31P NMR (CDCl3, 450 MHz): δ 116.31. 19F NMR (CDCl3, 450 MHz): δ −116.10.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms were included in idealized positions and treated as riding atoms: C—H = 0.93–0.97 Å with U iso(H) = 1.5U eq(C) for methyl H atoms and = 1.2U eq(C) for other H atoms.

Table 2. Experimental details.

Crystal data
Chemical formula C22H21FNO3P
M r 397.37
Crystal system, space group Monoclinic, P21/n
Temperature (K) 140
a, b, c () 18.3667(8), 5.7898(2), 19.7710(7)
() 110.870(4)
V (3) 1964.50(13)
Z 4
Radiation type Mo K
(mm1) 0.17
Crystal size (mm) 0.40 0.11 0.07
 
Data collection
Diffractometer Oxford Diffraction Xcalibur 3/Sapphire3 CCD
Absorption correction Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010)
T min, T max 0.790, 1.000
No. of measured, independent and observed [I > 2(I)] reflections 32284, 4518, 3624
R int 0.054
(sin /)max (1) 0.650
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.044, 0.097, 1.05
No. of reflections 4518
No. of parameters 253
H-atom treatment H-atom parameters constrained
max, min (e 3) 0.26, 0.34

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97, SHELXL97 and SHELXL2014 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989014026838/su5030sup1.cif

e-71-00085-sup1.cif (1.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014026838/su5030Isup2.hkl

e-71-00085-Isup2.hkl (247.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014026838/su5030Isup3.cml

CCDC reference: 1037929

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge the King Abdulaziz City for Science and Technology, Riyadh, Kingdom of Saudi Arabia, for their financial support in the framework of an MSc program for BLAlB (grant 0043–12).

supplementary crystallographic information

Crystal data

C22H21FNO3P F(000) = 832
Mr = 397.37 Dx = 1.344 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 18.3667 (8) Å Cell parameters from 5215 reflections
b = 5.7898 (2) Å θ = 3.1–32.5°
c = 19.7710 (7) Å µ = 0.17 mm1
β = 110.870 (4)° T = 140 K
V = 1964.50 (13) Å3 Prism, pale yellow
Z = 4 0.40 × 0.11 × 0.07 mm

Data collection

Oxford Diffraction Xcalibur 3/Sapphire3 CCD diffractometer 4518 independent reflections
Radiation source: Enhance (Mo) X-ray Source 3624 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.054
Detector resolution: 16.0050 pixels mm-1 θmax = 27.5°, θmin = 3.1°
Thin–slice φ and ω scans h = −23→23
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) k = −7→7
Tmin = 0.790, Tmax = 1.000 l = −25→25
32284 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0347P)2 + 0.8268P] where P = (Fo2 + 2Fc2)/3
4518 reflections (Δ/σ)max < 0.001
253 parameters Δρmax = 0.26 e Å3
0 restraints Δρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement._reflns_Friedel_fraction is defined as the number of unique Friedel pairs measured divided by the number that would be possible theoretically, ignoring centric projections and systematic absences.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.40211 (9) 0.4807 (3) 0.77326 (8) 0.0211 (3)
C2 0.37237 (9) 0.3394 (3) 0.71306 (8) 0.0219 (3)
C3 0.32866 (10) 0.1394 (3) 0.71261 (9) 0.0250 (4)
H3 0.3085 0.0508 0.6708 0.030*
C4 0.31611 (10) 0.0769 (3) 0.77383 (9) 0.0275 (4)
H4 0.2892 −0.0588 0.7742 0.033*
C5 0.32844 (12) 0.1500 (4) 0.89990 (10) 0.0382 (5)
H5 0.3014 0.0142 0.8999 0.046*
C6 0.35310 (13) 0.2835 (4) 0.96045 (11) 0.0494 (6)
H6 0.3437 0.2381 1.0017 0.059*
C7 0.39270 (13) 0.4898 (4) 0.96012 (11) 0.0480 (6)
H7 0.4084 0.5826 1.0012 0.058*
C8 0.40887 (11) 0.5581 (4) 0.90065 (9) 0.0349 (4)
H8 0.4354 0.6958 0.9020 0.042*
C9 0.38558 (9) 0.4212 (3) 0.83716 (9) 0.0240 (4)
C10 0.34324 (10) 0.2143 (3) 0.83686 (9) 0.0262 (4)
C11 0.45172 (9) 0.6736 (3) 0.76817 (8) 0.0221 (3)
H11 0.4477 0.7220 0.7221 0.027*
N12 0.49987 (8) 0.7800 (2) 0.82205 (7) 0.0240 (3)
C121 0.54836 (9) 0.9486 (3) 0.80773 (9) 0.0228 (3)
C122 0.56436 (10) 1.1496 (3) 0.84926 (9) 0.0269 (4)
H122 0.5429 1.1695 0.8850 0.032*
C123 0.61157 (10) 1.3197 (3) 0.83817 (10) 0.0304 (4)
H123 0.6209 1.4555 0.8650 0.036*
C124 0.64446 (10) 1.2835 (3) 0.78647 (10) 0.0300 (4)
F124 0.69271 (6) 1.44882 (19) 0.77655 (7) 0.0435 (3)
C125 0.63219 (10) 1.0855 (3) 0.74575 (10) 0.0301 (4)
H125 0.6560 1.0644 0.7119 0.036*
C126 0.58359 (10) 0.9183 (3) 0.75626 (9) 0.0260 (4)
H126 0.5742 0.7839 0.7287 0.031*
P1 0.41707 (3) 0.20397 (8) 0.60526 (2) 0.02624 (12)
O2 0.38648 (7) 0.3996 (2) 0.65108 (6) 0.0262 (3)
O3 0.33653 (7) 0.14447 (19) 0.54070 (6) 0.0269 (3)
O4 0.45712 (7) 0.3839 (2) 0.56752 (6) 0.0293 (3)
C31 0.29181 (10) 0.3271 (3) 0.49448 (9) 0.0270 (4)
H31A 0.2717 0.4289 0.5227 0.032*
H31B 0.2477 0.2601 0.4563 0.032*
C32 0.34018 (10) 0.4681 (3) 0.46065 (8) 0.0247 (4)
C33 0.41052 (10) 0.5660 (3) 0.52151 (9) 0.0272 (4)
H33A 0.4426 0.6532 0.5008 0.033*
H33B 0.3927 0.6710 0.5506 0.033*
C34 0.36634 (11) 0.3186 (3) 0.40960 (9) 0.0338 (4)
H34A 0.3974 0.1925 0.4362 0.051*
H34B 0.3966 0.4105 0.3889 0.051*
H34C 0.3214 0.2591 0.3717 0.051*
C35 0.29039 (12) 0.6694 (3) 0.41909 (10) 0.0378 (5)
H35A 0.3199 0.7601 0.3973 0.057*
H35B 0.2754 0.7641 0.4518 0.057*
H35C 0.2446 0.6105 0.3820 0.057*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0179 (8) 0.0223 (8) 0.0214 (8) 0.0023 (6) 0.0050 (6) 0.0006 (6)
C2 0.0218 (8) 0.0245 (9) 0.0197 (8) 0.0044 (6) 0.0078 (7) 0.0017 (6)
C3 0.0235 (9) 0.0243 (9) 0.0248 (8) 0.0000 (7) 0.0058 (7) −0.0044 (7)
C4 0.0251 (9) 0.0240 (9) 0.0352 (9) −0.0020 (7) 0.0131 (8) 0.0003 (7)
C5 0.0400 (11) 0.0440 (12) 0.0377 (10) −0.0083 (9) 0.0223 (9) 0.0023 (9)
C6 0.0566 (14) 0.0693 (15) 0.0318 (10) −0.0176 (12) 0.0274 (10) −0.0035 (10)
C7 0.0543 (14) 0.0670 (15) 0.0287 (10) −0.0202 (11) 0.0222 (10) −0.0149 (10)
C8 0.0366 (10) 0.0438 (11) 0.0280 (9) −0.0115 (9) 0.0159 (8) −0.0094 (8)
C9 0.0196 (8) 0.0301 (9) 0.0223 (8) 0.0024 (7) 0.0074 (7) −0.0004 (7)
C10 0.0226 (8) 0.0306 (9) 0.0271 (8) 0.0016 (7) 0.0107 (7) 0.0017 (7)
C11 0.0224 (8) 0.0232 (8) 0.0204 (8) 0.0037 (6) 0.0071 (7) −0.0005 (6)
N12 0.0220 (7) 0.0263 (7) 0.0241 (7) −0.0008 (6) 0.0088 (6) −0.0031 (6)
C121 0.0196 (8) 0.0233 (8) 0.0228 (8) 0.0026 (6) 0.0043 (7) −0.0005 (7)
C122 0.0204 (8) 0.0308 (10) 0.0266 (9) 0.0023 (7) 0.0048 (7) −0.0056 (7)
C123 0.0227 (9) 0.0238 (9) 0.0373 (10) 0.0027 (7) 0.0016 (8) −0.0044 (8)
C124 0.0210 (9) 0.0243 (9) 0.0395 (10) −0.0016 (7) 0.0042 (8) 0.0083 (8)
F124 0.0348 (6) 0.0318 (6) 0.0615 (8) −0.0075 (5) 0.0142 (6) 0.0086 (5)
C125 0.0288 (9) 0.0329 (10) 0.0305 (9) 0.0018 (8) 0.0129 (8) 0.0040 (8)
C126 0.0280 (9) 0.0239 (9) 0.0255 (8) 0.0009 (7) 0.0089 (7) −0.0023 (7)
P1 0.0281 (2) 0.0278 (2) 0.0229 (2) 0.00239 (19) 0.00914 (18) −0.00166 (18)
O2 0.0367 (7) 0.0246 (6) 0.0189 (6) −0.0019 (5) 0.0118 (5) −0.0021 (5)
O3 0.0337 (7) 0.0223 (6) 0.0239 (6) −0.0050 (5) 0.0092 (5) −0.0029 (5)
O4 0.0225 (6) 0.0387 (7) 0.0270 (6) −0.0026 (5) 0.0092 (5) −0.0019 (5)
C31 0.0238 (9) 0.0315 (10) 0.0237 (8) −0.0029 (7) 0.0059 (7) −0.0029 (7)
C32 0.0289 (9) 0.0258 (9) 0.0202 (8) −0.0040 (7) 0.0096 (7) −0.0042 (7)
C33 0.0311 (9) 0.0284 (9) 0.0245 (8) −0.0076 (7) 0.0127 (7) −0.0031 (7)
C34 0.0400 (11) 0.0401 (11) 0.0238 (9) −0.0042 (9) 0.0143 (8) −0.0083 (8)
C35 0.0477 (12) 0.0330 (11) 0.0294 (9) 0.0014 (9) 0.0096 (9) 0.0016 (8)

Geometric parameters (Å, º)

C1—C2 1.386 (2) C123—C124 1.376 (3)
C1—C9 1.442 (2) C123—H123 0.9300
C1—C11 1.467 (2) C124—F124 1.365 (2)
C2—O2 1.3843 (19) C124—C125 1.372 (3)
C2—C3 1.407 (2) C125—C126 1.382 (2)
C3—C4 1.359 (2) C125—H125 0.9300
C3—H3 0.9300 C126—H126 0.9300
C4—C10 1.411 (2) P1—O4 1.6046 (13)
C4—H4 0.9300 P1—O3 1.6096 (12)
C5—C6 1.360 (3) P1—O2 1.6678 (12)
C5—C10 1.417 (2) O3—C31 1.447 (2)
C5—H5 0.9300 O4—C33 1.455 (2)
C6—C7 1.399 (3) C31—C32 1.525 (2)
C6—H6 0.9300 C31—H31A 0.9700
C7—C8 1.370 (3) C31—H31B 0.9700
C7—H7 0.9300 C32—C33 1.527 (2)
C8—C9 1.416 (2) C32—C35 1.528 (2)
C8—H8 0.9300 C32—C34 1.531 (2)
C9—C10 1.427 (2) C33—H33A 0.9700
C11—N12 1.275 (2) C33—H33B 0.9700
C11—H11 0.9300 C34—H34A 0.9600
N12—C121 1.416 (2) C34—H34B 0.9600
C121—C122 1.394 (2) C34—H34C 0.9600
C121—C126 1.398 (2) C35—H35A 0.9600
C122—C123 1.380 (2) C35—H35B 0.9600
C122—H122 0.9300 C35—H35C 0.9600
C2—C1—C9 118.02 (15) F124—C124—C123 118.63 (16)
C2—C1—C11 117.04 (14) C125—C124—C123 122.63 (17)
C9—C1—C11 124.85 (14) C124—C125—C126 118.48 (17)
O2—C2—C1 118.08 (14) C124—C125—H125 120.8
O2—C2—C3 119.20 (14) C126—C125—H125 120.8
C1—C2—C3 122.71 (15) C125—C126—C121 120.85 (16)
C4—C3—C2 119.39 (16) C125—C126—H126 119.6
C4—C3—H3 120.3 C121—C126—H126 119.6
C2—C3—H3 120.3 O4—P1—O3 102.37 (6)
C3—C4—C10 121.18 (16) O4—P1—O2 96.35 (6)
C3—C4—H4 119.4 O3—P1—O2 100.59 (6)
C10—C4—H4 119.4 C2—O2—P1 121.02 (10)
C6—C5—C10 121.11 (18) C31—O3—P1 119.93 (10)
C6—C5—H5 119.4 C33—O4—P1 119.75 (10)
C10—C5—H5 119.4 O3—C31—C32 112.32 (13)
C5—C6—C7 119.46 (18) O3—C31—H31A 109.1
C5—C6—H6 120.3 C32—C31—H31A 109.1
C7—C6—H6 120.3 O3—C31—H31B 109.1
C8—C7—C6 121.49 (19) C32—C31—H31B 109.1
C8—C7—H7 119.3 H31A—C31—H31B 107.9
C6—C7—H7 119.3 C31—C32—C33 108.34 (13)
C7—C8—C9 120.68 (18) C31—C32—C35 108.27 (14)
C7—C8—H8 119.7 C33—C32—C35 108.46 (14)
C9—C8—H8 119.7 C31—C32—C34 110.82 (14)
C8—C9—C10 117.75 (15) C33—C32—C34 110.69 (14)
C8—C9—C1 123.49 (16) C35—C32—C34 110.18 (14)
C10—C9—C1 118.76 (15) O4—C33—C32 111.58 (13)
C4—C10—C5 120.70 (17) O4—C33—H33A 109.3
C4—C10—C9 119.82 (15) C32—C33—H33A 109.3
C5—C10—C9 119.48 (16) O4—C33—H33B 109.3
N12—C11—C1 124.98 (15) C32—C33—H33B 109.3
N12—C11—H11 117.5 H33A—C33—H33B 108.0
C1—C11—H11 117.5 C32—C34—H34A 109.5
C11—N12—C121 117.67 (14) C32—C34—H34B 109.5
C122—C121—C126 118.57 (16) H34A—C34—H34B 109.5
C122—C121—N12 118.25 (15) C32—C34—H34C 109.5
C126—C121—N12 123.11 (15) H34A—C34—H34C 109.5
C123—C122—C121 120.98 (17) H34B—C34—H34C 109.5
C123—C122—H122 119.5 C32—C35—H35A 109.5
C121—C122—H122 119.5 C32—C35—H35B 109.5
C124—C123—C122 118.44 (16) H35A—C35—H35B 109.5
C124—C123—H123 120.8 C32—C35—H35C 109.5
C122—C123—H123 120.8 H35A—C35—H35C 109.5
F124—C124—C125 118.72 (17) H35B—C35—H35C 109.5
C9—C1—C2—O2 178.35 (14) C11—N12—C121—C126 −41.1 (2)
C11—C1—C2—O2 −4.8 (2) C126—C121—C122—C123 2.4 (2)
C9—C1—C2—C3 −1.5 (2) N12—C121—C122—C123 179.62 (15)
C11—C1—C2—C3 175.39 (14) C121—C122—C123—C124 −1.9 (2)
O2—C2—C3—C4 178.58 (15) C122—C123—C124—F124 −178.44 (15)
C1—C2—C3—C4 −1.6 (2) C122—C123—C124—C125 0.0 (3)
C2—C3—C4—C10 2.8 (3) F124—C124—C125—C126 179.69 (15)
C10—C5—C6—C7 1.0 (3) C123—C124—C125—C126 1.3 (3)
C5—C6—C7—C8 −1.5 (4) C124—C125—C126—C121 −0.7 (3)
C6—C7—C8—C9 0.2 (3) C122—C121—C126—C125 −1.1 (2)
C7—C8—C9—C10 1.6 (3) N12—C121—C126—C125 −178.18 (15)
C7—C8—C9—C1 −178.70 (19) C1—C2—O2—P1 133.32 (13)
C2—C1—C9—C8 −176.40 (16) C3—C2—O2—P1 −46.84 (19)
C11—C1—C9—C8 7.0 (3) O4—P1—O2—C2 −156.24 (12)
C2—C1—C9—C10 3.3 (2) O3—P1—O2—C2 99.87 (12)
C11—C1—C9—C10 −173.29 (15) O4—P1—O3—C31 −42.49 (13)
C3—C4—C10—C5 178.69 (17) O2—P1—O3—C31 56.49 (12)
C3—C4—C10—C9 −0.9 (3) O3—P1—O4—C33 43.33 (12)
C6—C5—C10—C4 −178.77 (19) O2—P1—O4—C33 −59.01 (12)
C6—C5—C10—C9 0.8 (3) P1—O3—C31—C32 54.06 (17)
C8—C9—C10—C4 177.50 (16) O3—C31—C32—C33 −57.15 (18)
C1—C9—C10—C4 −2.2 (2) O3—C31—C32—C35 −174.59 (13)
C8—C9—C10—C5 −2.1 (2) O3—C31—C32—C34 64.47 (18)
C1—C9—C10—C5 178.22 (16) P1—O4—C33—C32 −55.56 (16)
C2—C1—C11—N12 −160.05 (16) C31—C32—C33—O4 57.62 (18)
C9—C1—C11—N12 16.6 (3) C35—C32—C33—O4 174.93 (14)
C1—C11—N12—C121 174.38 (14) C34—C32—C33—O4 −64.08 (18)
C11—N12—C121—C122 141.88 (16)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of rings C1–C4/C9/C10 and C121–C126, respectively.

D—H···A D—H H···A D···A D—H···A
C4—H4···Cg1i 0.93 2.70 3.456 (2) 140
C35—H35C···Cg2ii 0.96 2.94 3.878 (2) 167

Symmetry codes: (i) −x+1/2, y−1/2, −z+3/2; (ii) x−1/2, −y+3/2, z−1/2.

References

  1. Beuken, E. K. van den, Meetsma, A., Kooijman, H., Spek, A. L. & Feringa, B. L. (1997). Inorg. Chim. Acta, 264, 171–183.
  2. Crabtree, R. H. (2005). Organometallic chemistry of the transition metals, 4th ed., pp. 99–103. Hoboken, NJ: Wiley-Interscience.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Hayashi, T. & Kumada, M. (1985). In Asymmetric Synthesis, Vol. 5, edited by J. D. Morrison, pp. 147–148. Orlando: Academic Press.
  5. Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  6. Joslin, E. E., McMullin, C. L., Gunnoe, T. B., Cundari, T. R., Sabat, M. & Myers, W. H. (2012). Inorg. Chem. 51, 4791–4801. [DOI] [PubMed]
  7. Kuehl, O. (2005). Coord. Chem. Rev. 249, 693–704.
  8. Kumara Swamy, K. C. & Satish Kumar, N. (2006). Acc. Chem. Res. 39, 324–333. [DOI] [PubMed]
  9. Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.
  10. Said, M. A., Pülm, M., Herbst-Irmer, R. & Kumara Swamy, K. C. (1996). J. Am. Chem. Soc. 118, 9841–9849.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Timosheva, N. V., Chandrasekaran, A. & Holmes, R. R. (2006). Inorg. Chem. 45, 3113–3123. [DOI] [PubMed]
  13. Tolman, C. A. (1977). Chem. Rev. 77, 313–348.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989014026838/su5030sup1.cif

e-71-00085-sup1.cif (1.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014026838/su5030Isup2.hkl

e-71-00085-Isup2.hkl (247.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014026838/su5030Isup3.cml

CCDC reference: 1037929

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES