Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 1;71(Pt 1):o51–o52. doi: 10.1107/S2056989014027236

1,1′-{(Hexane-1,6-di­yl)bis­[(aza­niumylyl­idene)methanylyl­idene]}bis­(naphthalen-2-olate)

Kamel Ouari a,*, Sabrina Bendia a, Moufida Merzougui a, Corinne Bailly b
PMCID: PMC4331877  PMID: 25705504

Abstract

The whole molecule of the title Schiff base compound, C28H28N2O2, is generated by inversion symmetry. It is formed from two units of ortho-hy­droxy­naphthaldehyde bridged with 1,6-di­amino­hexane. The N atoms are protonated and, thus, the structure is a bis-zwitterionic compound in the solid state. The zwitterion shows strong intra­molecular N—H⋯O hydrogen bonds between the iminium N and the naphthaleno­late O atoms.

Keywords: crystal structure; 1,6-di­amino­hexa­ne; 2-hy­droxy-1-naphthaldehyde; hydrogen bonding; elemental analysis.

Related literature  

For the synthesis of similar compounds, see: Ramos Silva et al. (2009); Li et al. (2007); Zhu et al. (2006); Sampath Kumar et al. (2010); Bhattacharjee et al. (2012). For their applications, see: Ourari et al. (2006, 2008); Ouari et al. (2010, 2015). For related crystal structures, see: Yuan & Li (2013); Paul & Kubicki (2009). For the biological activity of Schiff bases, see: Zayed et al. (2015); Abou-Hussein & Linert (2014); Sadeek et al. (2013).graphic file with name e-71-00o51-scheme1.jpg

Experimental  

Crystal data  

  • C28H28N2O2

  • M r = 424.52

  • Orthorhombic, Inline graphic

  • a = 23.722 (1) Å

  • b = 8.8117 (3) Å

  • c = 10.3903 (5) Å

  • V = 2171.90 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 K

  • 0.36 × 0.16 × 0.08 mm

Data collection  

  • Nonius KappaCCD diffractometer

  • 17177 measured reflections

  • 2500 independent reflections

  • 1285 reflections with I > 2σ(I)

  • R int = 0.082

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.160

  • S = 0.99

  • 2500 reflections

  • 150 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 200); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2013.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989014027236/mw2128sup1.cif

e-71-00o51-sup1.cif (1.5MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014027236/mw2128Isup2.hkl

e-71-00o51-Isup2.hkl (137.6KB, hkl)

. DOI: 10.1107/S2056989014027236/mw2128fig1.tif

The mol­ecular geometry of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines. Only the non-H atoms of the asymmetric unit are labelled.

c . DOI: 10.1107/S2056989014027236/mw2128fig2.tif

Crystal packing of the title compound viewed along the c axis.

CCDC reference: 1032693

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N1H1NO1 0.99(3) 1.74(3) 2.587(2) 141(2)

Acknowledgments

The authors gratefully acknowledge financial support from the Algerian Ministry of Higher Education and Scientific Research. They also acknowledge the help of Dr Jean Weiss (CLAC) at the University of Strasbourg, France.

supplementary crystallographic information

S1. Experimental

The Schiff base ligand was prepared in 67% yield by condensation between 58 mg (0.5 mmole) of 1,6-di­amino­hexane and 172 mg (1 mmole) of 2-hy­droxy-1-naphthaldehyde in methanol (12 mL). The mixture was refluxed and stirred under a nitro­gen atmosphere for 3 hours. The precipitate obtained was filtered, washed with methanol and di­ethyl ether and dried in vacuum overnight. The product was recrystallized from di­methyl sulfoxide at room temperature over a period of a week. The yellow, single crystals of C28H28O2N2 obtained were of X-ray quality. Elemental analysis: calculated for C28H28O2N2: C 79.20, H 6.65, N 6.60%; found: C 78.84, H 6.63, N 6.78%.

S1.1. Refinement

The iminium H atom was located from a difference Fourier map and refined isotropically. C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.95 Å (CH) or 0.99 Å (CH2) with Uiso(H) = 1.2Ueq(C—Haromatics). .

S2. Results and discussion

The synthesis of the Schiff base is similar to those described in the literature (Ramos Silva et al., 2009; Li et al., 2007; Zhu et al., 2006; Sampath Kumar et al., 2010; Bhattacharjee et al., 2012). These ligands are also currently applied in coordination chemistry for the synthesis of Schiff base complexes of transition metals (Ouari et al., 2015; Ouari et al., 2010; Ourari et al., 2008; Ourari et al., 2006). Compounds of the type of the title molecule possess diverse biological properties such as anti-anxiety, anti-depressant (Zayed et al., 2015) and anti-tumor activities as well as anti­bacterial and fungicidal properties (Abou-Hussein et al., 2014; Sadeek et al., 2013). We report here the synthesis of title compound and its crystal structure.

A perspective view of the title molecule, which has crystallographically- imposed centrosymmetry, is shown in Fig. 1. The intra­molecular N1—H1N···O1 hydrogen bond forces the O1–C1–C10–C11–N1 unit into near planarity (rms deviation 0.005 Å) with the consequence that the naphthalene portion is nearly co-planar with it (dihedral angle 1.20 (8)°).

Figures

Fig. 1.

Fig. 1.

The molecular geometry of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines. Only the non-H atoms of the asymmetric unit are labelled.

Fig. 2.

Fig. 2.

Crystal packing of the title compound viewed along the c axis.

Crystal data

C28H28N2O2 Dx = 1.298 Mg m3
Mr = 424.52 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pbcn Cell parameters from 8957 reflections
a = 23.722 (1) Å θ = 1.0–27.5°
b = 8.8117 (3) Å µ = 0.08 mm1
c = 10.3903 (5) Å T = 173 K
V = 2171.90 (16) Å3 Prism, yellow
Z = 4 0.36 × 0.16 × 0.08 mm
F(000) = 904

Data collection

Nonius KappaCCD diffractometer 1285 reflections with I > 2σ(I)
Radiation source: sealed tube Rint = 0.082
Graphite monochromator θmax = 27.5°, θmin = 2.5°
phi and ω scans h = −25→30
17177 measured reflections k = −10→11
2500 independent reflections l = −13→12

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.054 w = 1/[σ2(Fo2) + (0.0842P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.160 (Δ/σ)max < 0.001
S = 0.99 Δρmax = 0.23 e Å3
2500 reflections Δρmin = −0.28 e Å3
150 parameters Extinction correction: SHELXL2013 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0047 (14)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.42177 (9) 0.1531 (2) 0.9435 (2) 0.0314 (5)
C2 0.42703 (9) 0.1083 (2) 1.0765 (2) 0.0336 (5)
H2 0.4575 0.0451 1.1016 0.040*
C3 0.38971 (9) 0.1541 (2) 1.1655 (2) 0.0351 (5)
H3 0.3951 0.1236 1.2524 0.042*
C4 0.34205 (8) 0.2473 (2) 1.1344 (2) 0.0319 (5)
C5 0.30246 (9) 0.2899 (2) 1.2282 (2) 0.0389 (6)
H5 0.3080 0.2583 1.3147 0.047*
C6 0.25612 (9) 0.3759 (2) 1.1985 (2) 0.0411 (6)
H6 0.2297 0.4032 1.2631 0.049*
C7 0.24870 (9) 0.4224 (2) 1.0717 (2) 0.0416 (6)
H7 0.2167 0.4820 1.0497 0.050*
C8 0.28662 (9) 0.3839 (2) 0.9781 (2) 0.0359 (5)
H8 0.2806 0.4182 0.8926 0.043*
C9 0.33434 (8) 0.2945 (2) 1.0054 (2) 0.0294 (5)
C10 0.37521 (8) 0.24816 (18) 0.90863 (19) 0.0283 (5)
C11 0.36924 (9) 0.2932 (2) 0.7794 (2) 0.0311 (5)
H11 0.3382 0.3570 0.7587 0.037*
C12 0.39177 (9) 0.2937 (2) 0.55205 (19) 0.0372 (6)
H12A 0.3640 0.3775 0.5496 0.045*
H12B 0.3747 0.2051 0.5084 0.045*
C13 0.44381 (9) 0.3416 (2) 0.4786 (2) 0.0369 (5)
H13A 0.4324 0.3750 0.3914 0.044*
H13B 0.4689 0.2526 0.4687 0.044*
C14 0.47653 (8) 0.4686 (2) 0.54272 (19) 0.0370 (6)
H14A 0.4932 0.4303 0.6238 0.044*
H14B 0.4502 0.5518 0.5650 0.044*
N1 0.40291 (8) 0.25438 (18) 0.68565 (17) 0.0333 (5)
O1 0.45832 (6) 0.10907 (16) 0.86112 (13) 0.0403 (4)
H1N 0.4349 (11) 0.195 (2) 0.720 (2) 0.064 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0307 (12) 0.0318 (11) 0.0318 (13) −0.0016 (8) 0.0006 (10) −0.0004 (9)
C2 0.0348 (12) 0.0326 (10) 0.0335 (13) 0.0006 (9) −0.0050 (10) 0.0047 (9)
C3 0.0394 (14) 0.0371 (11) 0.0289 (12) −0.0057 (9) −0.0019 (10) 0.0040 (9)
C4 0.0311 (12) 0.0321 (10) 0.0325 (13) −0.0056 (8) −0.0003 (10) −0.0021 (9)
C5 0.0399 (14) 0.0449 (13) 0.0319 (13) −0.0090 (10) 0.0026 (11) −0.0056 (9)
C6 0.0307 (13) 0.0495 (13) 0.0431 (15) −0.0056 (10) 0.0073 (11) −0.0162 (10)
C7 0.0332 (13) 0.0438 (12) 0.0479 (15) 0.0008 (9) 0.0003 (11) −0.0105 (11)
C8 0.0347 (13) 0.0363 (11) 0.0367 (13) 0.0009 (9) −0.0002 (10) −0.0019 (9)
C9 0.0290 (12) 0.0284 (10) 0.0308 (12) −0.0039 (8) −0.0008 (9) −0.0017 (8)
C10 0.0277 (11) 0.0299 (10) 0.0275 (12) −0.0009 (8) −0.0026 (9) 0.0014 (8)
C11 0.0289 (12) 0.0301 (10) 0.0342 (13) −0.0002 (8) −0.0012 (10) −0.0004 (9)
C12 0.0397 (13) 0.0426 (12) 0.0293 (13) −0.0013 (9) −0.0026 (10) 0.0060 (9)
C13 0.0398 (13) 0.0430 (12) 0.0281 (12) 0.0014 (10) 0.0010 (10) 0.0041 (9)
C14 0.0413 (13) 0.0409 (11) 0.0288 (13) 0.0008 (10) 0.0005 (10) 0.0027 (9)
N1 0.0349 (10) 0.0380 (10) 0.0271 (11) 0.0018 (8) 0.0010 (9) 0.0042 (7)
O1 0.0383 (9) 0.0474 (8) 0.0352 (9) 0.0120 (7) 0.0035 (7) 0.0006 (7)

Geometric parameters (Å, º)

C1—O1 1.279 (2) C8—H8 0.9500
C1—C10 1.433 (3) C9—C10 1.455 (3)
C1—C2 1.442 (3) C10—C11 1.408 (3)
C2—C3 1.343 (3) C11—N1 1.305 (2)
C2—H2 0.9500 C11—H11 0.9500
C3—C4 1.434 (3) C12—N1 1.455 (2)
C3—H3 0.9500 C12—C13 1.511 (3)
C4—C5 1.405 (3) C12—H12A 0.9900
C4—C9 1.416 (3) C12—H12B 0.9900
C5—C6 1.370 (3) C13—C14 1.516 (3)
C5—H5 0.9500 C13—H13A 0.9900
C6—C7 1.391 (3) C13—H13B 0.9900
C6—H6 0.9500 C14—C14i 1.528 (4)
C7—C8 1.367 (3) C14—H14A 0.9900
C7—H7 0.9500 C14—H14B 0.9900
C8—C9 1.408 (3) N1—H1N 0.99 (3)
O1—C1—C10 122.03 (18) C11—C10—C1 118.94 (18)
O1—C1—C2 119.99 (18) C11—C10—C9 120.86 (18)
C10—C1—C2 117.97 (19) C1—C10—C9 120.19 (18)
C3—C2—C1 121.40 (19) N1—C11—C10 125.19 (19)
C3—C2—H2 119.3 N1—C11—H11 117.4
C1—C2—H2 119.3 C10—C11—H11 117.4
C2—C3—C4 122.44 (19) N1—C12—C13 113.56 (17)
C2—C3—H3 118.8 N1—C12—H12A 108.9
C4—C3—H3 118.8 C13—C12—H12A 108.9
C5—C4—C9 119.48 (19) N1—C12—H12B 108.9
C5—C4—C3 121.6 (2) C13—C12—H12B 108.9
C9—C4—C3 118.92 (18) H12A—C12—H12B 107.7
C6—C5—C4 121.9 (2) C12—C13—C14 113.75 (18)
C6—C5—H5 119.1 C12—C13—H13A 108.8
C4—C5—H5 119.1 C14—C13—H13A 108.8
C5—C6—C7 118.5 (2) C12—C13—H13B 108.8
C5—C6—H6 120.7 C14—C13—H13B 108.8
C7—C6—H6 120.7 H13A—C13—H13B 107.7
C8—C7—C6 121.1 (2) C13—C14—C14i 112.7 (2)
C8—C7—H7 119.4 C13—C14—H14A 109.1
C6—C7—H7 119.4 C14i—C14—H14A 109.1
C7—C8—C9 121.7 (2) C13—C14—H14B 109.1
C7—C8—H8 119.2 C14i—C14—H14B 109.1
C9—C8—H8 119.2 H14A—C14—H14B 107.8
C8—C9—C4 117.29 (18) C11—N1—C12 122.55 (19)
C8—C9—C10 123.64 (18) C11—N1—H1N 109.7 (14)
C4—C9—C10 119.06 (17) C12—N1—H1N 127.7 (14)
O1—C1—C2—C3 179.21 (17) C3—C4—C9—C10 −0.5 (3)
C10—C1—C2—C3 −0.1 (3) O1—C1—C10—C11 0.7 (3)
C1—C2—C3—C4 1.1 (3) C2—C1—C10—C11 180.00 (16)
C2—C3—C4—C5 177.89 (18) O1—C1—C10—C9 179.50 (17)
C2—C3—C4—C9 −0.8 (3) C2—C1—C10—C9 −1.2 (3)
C9—C4—C5—C6 0.3 (3) C8—C9—C10—C11 0.8 (3)
C3—C4—C5—C6 −178.41 (18) C4—C9—C10—C11 −179.71 (16)
C4—C5—C6—C7 −0.4 (3) C8—C9—C10—C1 −178.02 (17)
C5—C6—C7—C8 −0.1 (3) C4—C9—C10—C1 1.5 (3)
C6—C7—C8—C9 0.7 (3) C1—C10—C11—N1 0.5 (3)
C7—C8—C9—C4 −0.8 (3) C9—C10—C11—N1 −178.29 (17)
C7—C8—C9—C10 178.74 (17) N1—C12—C13—C14 −53.7 (2)
C5—C4—C9—C8 0.3 (3) C12—C13—C14—C14i −171.2 (2)
C3—C4—C9—C8 179.01 (16) C10—C11—N1—C12 174.49 (16)
C5—C4—C9—C10 −179.23 (16) C13—C12—N1—C11 139.58 (19)

Symmetry code: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1 0.99 (3) 1.74 (3) 2.587 (2) 141 (2)

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: MW2128).

References

  1. Abou-Hussein, A. A. & Linert, W. (2014). Spectrochim. Acta Part A, 117, 763–771. [DOI] [PMC free article] [PubMed]
  2. Bhattacharjee, C. R., Goswami, P. & Mondal, P. (2012). Inorg. Chim. Acta, 387, 86–92.
  3. Li, J., Liang, Z.-P. & Wu, Q. (2007). Acta Cryst. E63, o1086–o1087.
  4. Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
  5. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  6. Ouari, K., Bendia, S., Weiss, J. & Bailly, C. (2015). Spectrochim. Acta Part A, 135, 624–631. [DOI] [PubMed]
  7. Ouari, K., Ourari, A. & Weiss, J. (2010). J. Chem. Crystallogr. 40, 831–836.
  8. Ourari, A., Ouari, K., Khan, M. A. & Bouet, G. (2008). J. Coord. Chem. 61, 3846–3859.
  9. Ourari, A., Ouari, K., Moumeni, W., Sibous, L., Bouet, G. & Khan, M. A. (2006). Transition Met. Chem. 31, 169–175.
  10. Paul, A. & Kubicki, M. (2009). J. Mol. Struct. 938, 238–244.
  11. Ramos Silva, M., Silva, J. A., Matos Beja, A. & Sobral, A. J. F. N. (2009). Acta Cryst. E65, o1255. [DOI] [PMC free article] [PubMed]
  12. Sadeek, S. A., El-Attar, M. S. & Abd El-Hamid, S. M. (2013). J. Mol. Struct. 1051, 30–40.
  13. Sampath Kumar, H. C., Ramachandra Bhat, B., Rudresha, B. J., Ravindra, R. & Philip, R. (2010). Chem. Phys. Lett. 494, 95–99.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  16. Yuan, M. & Li, Z. (2013). J. Mol. Struct. 1031, 263–268.
  17. Zayed, E. M., Zayed, M. A. & El-Desawy, M. (2015). Spectrochim. Acta Part A, 134, 155–164. [DOI] [PubMed]
  18. Zhu, L.-N., Li, C.-Q., Li, X.-Z. & Li, R. (2006). Acta Cryst. E62, o4603–o4605.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989014027236/mw2128sup1.cif

e-71-00o51-sup1.cif (1.5MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014027236/mw2128Isup2.hkl

e-71-00o51-Isup2.hkl (137.6KB, hkl)

. DOI: 10.1107/S2056989014027236/mw2128fig1.tif

The mol­ecular geometry of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines. Only the non-H atoms of the asymmetric unit are labelled.

c . DOI: 10.1107/S2056989014027236/mw2128fig2.tif

Crystal packing of the title compound viewed along the c axis.

CCDC reference: 1032693

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES