Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 1;71(Pt 1):o21–o22. doi: 10.1107/S2056989014026267

Crystal structure of (Z)-3-(4-meth­oxy­benzyl­idene)-2,3-di­hydro­benzo[b][1,4]thia­zepin-4(5H)-one

V Vinayagam a, J Mohan Raj b, S Murugavel c,*, R Selvakumar a, M Bakthadoss a,d,*
PMCID: PMC4331881  PMID: 25705485

Abstract

In the title compound, C17H15NO2S, the two C atoms linking the S and carbonyl C atoms of the seven-membered thia­zepine ring are disordered over two sites, with occupancies of 0.511 (4) and 0.489 (4); both disorder components adopt distorted twist-boat conformations. In the crystal, N—H⋯O and C—H⋯O hydrogen bonds link inverted-related mol­ecules into dimers, incorporating R 1 2(6) and R 2 2(8) ring motifs; the acceptor carbonyl O atom is bifurcated. These dimers are further linked by C—H⋯O hydrogen bonds, forming supra­molecular tapes running along the a axis.

Keywords: crystal structure; benzo[b][1,4]thia­zepin-4(5H)-one; pharmaceutical properties; thia­zepin derivatives; hydrogen bonding

Related literature  

For the pharmaceutical properties of thia­zepin derivatives, see: Lončar-Tomascovic et al. (2000); Rajsner et al. (1971); Metys & Metysová (1965). For related structures, see: Lakshmanan et al. (2012); Selvakumar et al. (2012).graphic file with name e-71-00o21-scheme1.jpg

Experimental  

Crystal data  

  • C17H15NO2S

  • M r = 297.36

  • Monoclinic, Inline graphic

  • a = 21.434 (5) Å

  • b = 5.715 (4) Å

  • c = 23.870 (5) Å

  • β = 101.091 (4)°

  • V = 2869 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 293 K

  • 0.30 × 0.30 × 0.25 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.934, T max = 0.944

  • 17286 measured reflections

  • 4099 independent reflections

  • 2744 reflections with I > 2σ(I)

  • R int = 0.028

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.139

  • S = 1.03

  • 4099 reflections

  • 210 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989014026267/tk5350sup1.cif

e-71-00o21-sup1.cif (27.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014026267/tk5350Isup2.hkl

e-71-00o21-Isup2.hkl (196.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014026267/tk5350Isup3.cml

. DOI: 10.1107/S2056989014026267/tk5350fig1.tif

Mol­ecular structure of the title compound showing displacement ellipsoids at the 30% probability level. H atoms are presented as a small spheres of arbitrary radii.

via a -x, −y, −z x, 1+y, z . DOI: 10.1107/S2056989014026267/tk5350fig2.tif

Supra­molecular tape formation in the crystal packing of the title compound whereby bifurcated hydrogen bonds link inverted mol­ecules into dimers sustained by N—H⋯O and C—H⋯O (red dashed lines) contacts are linked via C—H⋯O contacts (blue dashed lines) along a axis. [Symmetry code: (i) -x, −y, −z; (ii) x, 1+y, z].

CCDC reference: 1036763

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N1H1O1i 0.86 2.07 2.9291(18) 177
C6H6O1i 0.93 2.45 3.263(3) 146
C1BH1CO1ii 0.97 2.52 3.377(4) 147

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

supplementary crystallographic information

S1. Structural commentary

The title compound is used as an inter­mediate for the synthesis of dosulepin, which is an anti­depressant of the tricyclic family. Dosulepin prevents reabsorbing of serotonin and noradrenaline in the brain, helps to prolong the mood lightening effect of any released noradrenaline and serotonin, thus relieving depression. Dibenzo[c,e]thia­zepin derivatives exhibit chiroptical properties (Tomascovic et al., 2000). Dibenzo[b,e]thia­zepin-5,5-dioxide derivatives possess anti­histaminic and anti­allergenic activities (Rajsner et al., 1971). Benzene thia­zepin derivatives are identified as a type of effective anti­histaminic compounds (Metys et al., 1965). In view of this biological importance, the crystal structure of the title compound has been carried out and the results are presented here.

Fig. 1 shows a displacement ellipsoid plot of (I), with the atom numbering scheme. The geometric parameters of the title molecule agree well with those reported for similar structures (Selvakumar et al.., 2012; Lakshmanan et al., 2012). The sum of angles at N1 atom of the thia­zepin ring (359.9°) is in accordance with sp2 hybridization. Both the major and minor conformers of the disorderd thia­zepine ring adopt distorted twist-boat conformations.

In the crystal, inter­molecular bifurcated acceptor N1—H1···O1i and C6—H6···O1i (Table 1) hydrogen bonds link inverted-related molecules into dimers, incorporating R12(6) and R22(8) ring motifs. These dimers are further linked by C1B—H1C···O1ii (Table 1) hydrogen bonds forming supra­molecular tapes running along the a axis (Fig. 2).

S2. Synthesis and crystallization

A mixture of (Z)-methyl 2-(bromo­methyl)-3-(4-meth­oxy­phenyl)­acrylate (2 mmol) and o-amino­thio­phenol (2 mmol) in the presence of potassium tert-butoxide (4.8 mmol) in dry THF (10 ml) was stirred at room temperature for 1 h. After the completion of the reaction as indicated by TLC, the reaction mixture was concentrated and the resulting crude mass was diluted with water (20 ml) and extracted with ethyl acetate (3 x 20 ml). The organic layer was washed with brine (2 x 20 ml) and dried over anhydrous sodium sulfate. It was then concentrated to successfully provide the crude final product ((Z)-3-(4-meth­oxy­benzyl­idene)-2,3-di­hydro­benzo[b][1,4] thia­zepin-4(5H)-one). This was purified by column chromatography on silica gel with ethyl­acetate/hexane 1:19 as eluent to afford the title compound in good yield (47 %). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of its ethyl­acetate solution at room temperature.

S3. Refinement

Atoms C1 and C9 of the thia­zepine ring are disordered over two positions (C1A/C1B and C9A/C9B) with refined occupancies of 0.511 (4) and 0.489 (4). The corresponding bond distances involving the disorderd atoms were restrained to be equal. H atoms were positioned geometrically, (C—H = 0.93–0.97 Å and N—H = 0.86 Å) constrained to ride on their parent atom, with Uiso(H)=1.5Ueq for methyl H atoms and 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing displacement ellipsoids at the 30% probability level. H atoms are presented as a small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Supramolecular tape formation in the crystal packing of the title compound whereby bifurcated hydrogen bonds link inverted molecules into dimers sustained by N—H···O and C—H···O (red dashed lines) contacts are linked via C—H···O contacts (blue dashed lines) along a axis. [Symmetry code: (i) -x, -y, -z; (ii) x, 1+y, z].

Crystal data

C17H15NO2S F(000) = 1248
Mr = 297.36 Dx = 1.377 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 4132 reflections
a = 21.434 (5) Å θ = 1.7–29.9°
b = 5.715 (4) Å µ = 0.23 mm1
c = 23.870 (5) Å T = 293 K
β = 101.091 (4)° Block, colourless
V = 2869 (2) Å3 0.30 × 0.30 × 0.25 mm
Z = 8

Data collection

Bruker APEXII CCD diffractometer 4099 independent reflections
Radiation source: fine-focus sealed tube 2744 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.028
Detector resolution: 10.0 pixels mm-1 θmax = 29.9°, θmin = 1.7°
ω scans h = −30→24
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −7→8
Tmin = 0.934, Tmax = 0.944 l = −33→32
17286 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0647P)2 + 1.1615P] where P = (Fo2 + 2Fc2)/3
4099 reflections (Δ/σ)max < 0.001
210 parameters Δρmax = 0.25 e Å3
4 restraints Δρmin = −0.34 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C2 −0.05513 (8) 0.5769 (3) 0.10567 (7) 0.0516 (4)
C3 −0.09963 (11) 0.7568 (3) 0.10107 (9) 0.0689 (5)
H3 −0.1001 0.8512 0.1327 0.083*
C4 −0.14266 (12) 0.8004 (4) 0.05193 (10) 0.0790 (6)
H4 −0.1718 0.9219 0.0503 0.095*
C5 −0.14211 (10) 0.6629 (4) 0.00527 (10) 0.0722 (5)
H5 −0.1708 0.6906 −0.0286 0.087*
C6 −0.09941 (10) 0.4851 (4) 0.00854 (9) 0.0691 (5)
H6 −0.0996 0.3927 −0.0236 0.083*
C7 −0.05515 (8) 0.4357 (3) 0.05837 (8) 0.0525 (4)
C8 0.03347 (9) 0.1194 (3) 0.08459 (7) 0.0549 (4)
C10 0.10676 (9) 0.0681 (3) 0.17287 (7) 0.0528 (4)
H10A 0.1284 −0.0130 0.1487 0.063* 0.489 (4)
H10B 0.1093 −0.0785 0.1566 0.063* 0.511 (4)
C11 0.14272 (8) 0.0921 (3) 0.23129 (7) 0.0474 (4)
C12 0.13743 (8) 0.2801 (3) 0.26731 (7) 0.0534 (4)
H12 0.1074 0.3957 0.2549 0.064*
C13 0.17552 (8) 0.2999 (3) 0.32082 (7) 0.0525 (4)
H13 0.1710 0.4276 0.3439 0.063*
C14 0.22010 (8) 0.1302 (3) 0.33987 (7) 0.0492 (4)
C15 0.22513 (8) −0.0627 (3) 0.30585 (8) 0.0551 (4)
H15 0.2542 −0.1806 0.3190 0.066*
C16 0.18736 (8) −0.0793 (3) 0.25292 (8) 0.0533 (4)
H16 0.1915 −0.2093 0.2305 0.064*
C17 0.26254 (13) 0.3437 (5) 0.42387 (10) 0.0895 (7)
H17A 0.2716 0.4752 0.4017 0.134*
H17B 0.2950 0.3305 0.4576 0.134*
H17C 0.2220 0.3656 0.4346 0.134*
N1 −0.01563 (7) 0.2418 (3) 0.05307 (6) 0.0610 (4)
H1 −0.0258 0.1826 0.0194 0.073*
O1 0.05465 (6) −0.0461 (2) 0.06174 (5) 0.0605 (3)
O2 0.26115 (6) 0.1372 (2) 0.39107 (6) 0.0691 (4)
S1 −0.00374 (3) 0.55138 (8) 0.17212 (2) 0.06381 (18)
C1A 0.00694 (16) 0.2393 (5) 0.18212 (13) 0.0438 (8) 0.489 (4)
H1A 0.0222 0.2080 0.2224 0.053* 0.489 (4)
H1B −0.0340 0.1629 0.1710 0.053* 0.489 (4)
C9A 0.05207 (17) 0.1363 (7) 0.14902 (14) 0.0425 (8) 0.489 (4)
C1B 0.06528 (16) 0.4832 (6) 0.14859 (14) 0.0529 (9) 0.511 (4)
H1C 0.0661 0.5669 0.1134 0.063* 0.511 (4)
H1D 0.1016 0.5338 0.1768 0.063* 0.511 (4)
C9B 0.07040 (18) 0.2265 (6) 0.13852 (15) 0.0467 (8) 0.511 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C2 0.0612 (10) 0.0418 (8) 0.0559 (9) −0.0078 (7) 0.0218 (8) −0.0015 (7)
C3 0.0945 (15) 0.0501 (10) 0.0679 (12) 0.0085 (10) 0.0301 (11) 0.0005 (9)
C4 0.0937 (16) 0.0612 (12) 0.0861 (15) 0.0218 (11) 0.0275 (13) 0.0105 (11)
C5 0.0695 (12) 0.0685 (13) 0.0761 (13) 0.0072 (10) 0.0079 (10) 0.0050 (11)
C6 0.0674 (12) 0.0676 (12) 0.0677 (12) 0.0064 (10) 0.0018 (9) −0.0141 (10)
C7 0.0505 (9) 0.0505 (9) 0.0570 (9) −0.0039 (7) 0.0117 (7) −0.0085 (7)
C8 0.0606 (10) 0.0570 (10) 0.0470 (9) 0.0012 (8) 0.0105 (8) −0.0085 (7)
C10 0.0680 (11) 0.0419 (8) 0.0494 (9) −0.0073 (8) 0.0134 (8) −0.0044 (7)
C11 0.0530 (9) 0.0431 (8) 0.0481 (8) −0.0056 (7) 0.0147 (7) −0.0008 (6)
C12 0.0564 (10) 0.0456 (9) 0.0562 (9) 0.0089 (7) 0.0060 (8) −0.0005 (7)
C13 0.0556 (10) 0.0487 (9) 0.0530 (9) 0.0055 (7) 0.0097 (7) −0.0071 (7)
C14 0.0464 (8) 0.0509 (9) 0.0514 (9) 0.0014 (7) 0.0122 (7) 0.0047 (7)
C15 0.0538 (10) 0.0464 (9) 0.0658 (11) 0.0106 (7) 0.0135 (8) 0.0047 (8)
C16 0.0601 (10) 0.0418 (8) 0.0614 (10) 0.0026 (7) 0.0200 (8) −0.0054 (7)
C17 0.1079 (18) 0.0866 (16) 0.0624 (12) 0.0135 (14) −0.0125 (12) −0.0123 (12)
N1 0.0660 (9) 0.0634 (9) 0.0499 (8) 0.0091 (7) 0.0020 (7) −0.0183 (7)
O1 0.0781 (8) 0.0546 (7) 0.0481 (7) 0.0079 (6) 0.0104 (6) −0.0085 (5)
O2 0.0680 (8) 0.0720 (9) 0.0597 (8) 0.0116 (7) −0.0064 (6) 0.0002 (7)
S1 0.0906 (4) 0.0514 (3) 0.0512 (3) −0.0002 (2) 0.0179 (2) −0.00693 (19)
C1A 0.0543 (18) 0.0415 (16) 0.0383 (15) −0.0025 (13) 0.0156 (13) −0.0022 (12)
C9A 0.048 (2) 0.0385 (18) 0.0434 (17) −0.0072 (15) 0.0143 (15) −0.0046 (14)
C1B 0.063 (2) 0.0443 (17) 0.0482 (17) −0.0116 (14) 0.0023 (15) 0.0032 (13)
C9B 0.0474 (19) 0.0451 (19) 0.0477 (18) −0.0094 (15) 0.0093 (15) −0.0068 (15)

Geometric parameters (Å, º)

C2—C7 1.388 (2) C12—C13 1.382 (2)
C2—C3 1.392 (3) C12—H12 0.9300
C2—S1 1.7545 (19) C13—C14 1.376 (2)
C3—C4 1.368 (3) C13—H13 0.9300
C3—H3 0.9300 C14—O2 1.362 (2)
C4—C5 1.365 (3) C14—C15 1.386 (2)
C4—H4 0.9300 C15—C16 1.367 (2)
C5—C6 1.360 (3) C15—H15 0.9300
C5—H5 0.9300 C16—H16 0.9300
C6—C7 1.400 (3) C17—O2 1.413 (3)
C6—H6 0.9300 C17—H17A 0.9600
C7—N1 1.415 (2) C17—H17B 0.9600
C8—O1 1.222 (2) C17—H17C 0.9600
C8—N1 1.363 (2) N1—H1 0.8600
C8—C9B 1.505 (4) S1—C1B 1.725 (3)
C8—C9A 1.516 (4) S1—C1A 1.808 (3)
C10—C9A 1.262 (4) C1A—C9A 1.484 (4)
C10—C9B 1.361 (4) C1A—H1A 0.9700
C10—C11 1.464 (2) C1A—H1B 0.9700
C10—H10A 0.9300 C1B—C9B 1.494 (4)
C10—H10B 0.9300 C1B—H1C 0.9700
C11—C12 1.395 (2) C1B—H1D 0.9700
C11—C16 1.397 (2)
C7—C2—C3 118.18 (18) C12—C13—H13 120.1
C7—C2—S1 126.08 (14) O2—C14—C13 124.28 (16)
C3—C2—S1 115.74 (14) O2—C14—C15 116.08 (15)
C4—C3—C2 122.73 (19) C13—C14—C15 119.64 (16)
C4—C3—H3 118.6 C16—C15—C14 119.87 (15)
C2—C3—H3 118.6 C16—C15—H15 120.1
C5—C4—C3 119.0 (2) C14—C15—H15 120.1
C5—C4—H4 120.5 C15—C16—C11 122.34 (16)
C3—C4—H4 120.5 C15—C16—H16 118.8
C6—C5—C4 119.7 (2) C11—C16—H16 118.8
C6—C5—H5 120.2 O2—C17—H17A 109.5
C4—C5—H5 120.2 O2—C17—H17B 109.5
C5—C6—C7 122.6 (2) H17A—C17—H17B 109.5
C5—C6—H6 118.7 O2—C17—H17C 109.5
C7—C6—H6 118.7 H17A—C17—H17C 109.5
C2—C7—C6 117.89 (17) H17B—C17—H17C 109.5
C2—C7—N1 128.43 (17) C8—N1—C7 139.85 (15)
C6—C7—N1 113.67 (16) C8—N1—H1 110.1
O1—C8—N1 117.68 (15) C7—N1—H1 110.1
O1—C8—C9B 121.1 (2) C14—O2—C17 117.57 (15)
N1—C8—C9B 119.10 (19) C1B—S1—C2 98.80 (12)
O1—C8—C9A 117.03 (19) C1B—S1—C1A 74.06 (15)
N1—C8—C9A 123.48 (18) C2—S1—C1A 104.06 (12)
C9B—C8—C9A 27.63 (14) C9A—C1A—S1 113.6 (2)
C9A—C10—C9B 31.63 (17) C9A—C1A—H1A 108.8
C9A—C10—C11 132.4 (2) S1—C1A—H1A 108.8
C9B—C10—C11 130.31 (19) C9A—C1A—H1B 108.8
C9A—C10—H10A 113.8 S1—C1A—H1B 108.8
C9B—C10—H10A 104.7 H1A—C1A—H1B 107.7
C11—C10—H10A 113.8 C10—C9A—C1A 121.8 (3)
C9A—C10—H10B 102.4 C10—C9A—C8 118.6 (2)
C9B—C10—H10B 114.8 C1A—C9A—C8 119.6 (3)
C11—C10—H10B 114.9 C9B—C1B—S1 111.6 (2)
H10A—C10—H10B 38.2 C9B—C1B—H1C 109.3
C12—C11—C16 116.35 (16) S1—C1B—H1C 109.3
C12—C11—C10 124.67 (15) C9B—C1B—H1D 109.3
C16—C11—C10 118.94 (15) S1—C1B—H1D 109.3
C13—C12—C11 121.95 (16) H1C—C1B—H1D 108.0
C13—C12—H12 119.0 C10—C9B—C1B 127.4 (3)
C11—C12—H12 119.0 C10—C9B—C8 113.0 (2)
C14—C13—C12 119.80 (16) C1B—C9B—C8 119.6 (3)
C14—C13—H13 120.1
C7—C2—C3—C4 −0.6 (3) C7—C2—S1—C1B 39.04 (18)
S1—C2—C3—C4 179.50 (17) C3—C2—S1—C1B −141.03 (17)
C2—C3—C4—C5 −0.1 (3) C7—C2—S1—C1A −36.62 (18)
C3—C4—C5—C6 0.5 (3) C3—C2—S1—C1A 143.31 (16)
C4—C5—C6—C7 −0.1 (4) C1B—S1—C1A—C9A −17.3 (2)
C3—C2—C7—C6 0.9 (3) C2—S1—C1A—C9A 78.0 (2)
S1—C2—C7—C6 −179.14 (14) C9B—C10—C9A—C1A −109.5 (6)
C3—C2—C7—N1 −178.87 (18) C11—C10—C9A—C1A −8.6 (6)
S1—C2—C7—N1 1.1 (3) C9B—C10—C9A—C8 68.3 (4)
C5—C6—C7—C2 −0.6 (3) C11—C10—C9A—C8 169.3 (2)
C5—C6—C7—N1 179.2 (2) S1—C1A—C9A—C10 107.7 (4)
C9A—C10—C11—C12 −30.8 (4) S1—C1A—C9A—C8 −70.1 (4)
C9B—C10—C11—C12 11.7 (4) O1—C8—C9A—C10 34.1 (4)
C9A—C10—C11—C16 151.4 (3) N1—C8—C9A—C10 −161.6 (3)
C9B—C10—C11—C16 −166.1 (3) C9B—C8—C9A—C10 −71.9 (4)
C16—C11—C12—C13 1.9 (2) O1—C8—C9A—C1A −148.0 (3)
C10—C11—C12—C13 −175.93 (16) N1—C8—C9A—C1A 16.3 (4)
C11—C12—C13—C14 −0.2 (3) C9B—C8—C9A—C1A 105.9 (6)
C12—C13—C14—O2 177.88 (16) C2—S1—C1B—C9B −85.8 (2)
C12—C13—C14—C15 −1.9 (3) C1A—S1—C1B—C9B 16.4 (2)
O2—C14—C15—C16 −177.57 (15) C9A—C10—C9B—C1B 118.0 (6)
C13—C14—C15—C16 2.2 (3) C11—C10—C9B—C1B 10.1 (6)
C14—C15—C16—C11 −0.4 (3) C9A—C10—C9B—C8 −63.2 (4)
C12—C11—C16—C15 −1.6 (2) C11—C10—C9B—C8 −171.13 (19)
C10—C11—C16—C15 176.40 (16) S1—C1B—C9B—C10 −102.3 (4)
O1—C8—N1—C7 −179.9 (2) S1—C1B—C9B—C8 79.0 (4)
C9B—C8—N1—C7 −16.1 (4) O1—C8—C9B—C10 −32.2 (4)
C9A—C8—N1—C7 15.9 (4) N1—C8—C9B—C10 164.6 (2)
C2—C7—N1—C8 −1.1 (4) C9A—C8—C9B—C10 57.2 (4)
C6—C7—N1—C8 179.1 (2) O1—C8—C9B—C1B 146.6 (3)
C13—C14—O2—C17 −7.0 (3) N1—C8—C9B—C1B −16.6 (4)
C15—C14—O2—C17 172.7 (2) C9A—C8—C9B—C1B −123.9 (6)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.86 2.07 2.9291 (18) 177
C6—H6···O1i 0.93 2.45 3.263 (3) 146
C1B—H1C···O1ii 0.97 2.52 3.377 (4) 147

Symmetry codes: (i) −x, −y, −z; (ii) x, y+1, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: TK5350).

References

  1. Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  3. Lakshmanan, D., Murugavel, S., Selvakumar, R. & Bakthadoss, M. (2012). Acta Cryst. E68, o2130. [DOI] [PMC free article] [PubMed]
  4. Lončar-Tomašcović, L., Šarac-Arneri, R., Hergold-Brundić, A., Nagl, A., Mintas, M. & Sandström, J. (2000). HCA, 83, 479–494.
  5. Metys, J. & Metysová, J. (1965). Acta Biol. Med. Ger. 15, 871–873. [PubMed]
  6. Rajsner, M., Protiva, M. & Metysova, J. (1971). Czech. Patent Appl. CS 143737.
  7. Selvakumar, R., Bakthadoss, M., Lakshmanan, D. & Murugavel, S. (2012). Acta Cryst. E68, o2126. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989014026267/tk5350sup1.cif

e-71-00o21-sup1.cif (27.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014026267/tk5350Isup2.hkl

e-71-00o21-Isup2.hkl (196.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014026267/tk5350Isup3.cml

. DOI: 10.1107/S2056989014026267/tk5350fig1.tif

Mol­ecular structure of the title compound showing displacement ellipsoids at the 30% probability level. H atoms are presented as a small spheres of arbitrary radii.

via a -x, −y, −z x, 1+y, z . DOI: 10.1107/S2056989014026267/tk5350fig2.tif

Supra­molecular tape formation in the crystal packing of the title compound whereby bifurcated hydrogen bonds link inverted mol­ecules into dimers sustained by N—H⋯O and C—H⋯O (red dashed lines) contacts are linked via C—H⋯O contacts (blue dashed lines) along a axis. [Symmetry code: (i) -x, −y, −z; (ii) x, 1+y, z].

CCDC reference: 1036763

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES