Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 1;71(Pt 1):79–81. doi: 10.1107/S2056989014027169

Crystal structure of (1S,2R,4S)-1-[(morpholin-4-yl)meth­yl]-4-(prop-1-en-2-yl)cyclo­hexane-1,2-diol

Rachid Outouch a, Saadia Oubaassine a, Mustapha Ait Ali a, Larbi El Firdoussi a,*, Anke Spannenberg b
PMCID: PMC4331882  PMID: 25705457

Besides intra­molecular O—H⋯N hydrogen bonds, the crystal structure displays inter­molecular O—H⋯O and C—H⋯O hydrogen bonds linking the mol­ecules into undulating layers parallel to the (Inline graphic01) plane.

Keywords: crystal structure; hydrogen bonds; amino-1,2-diol; chiral ligand for catalytic enanti­oselective transformations

Abstract

The asymmetric unit of the title compound, C14H25NO3, contains two independent mol­ecules with similar geometry. The morpholine and cyclo­hexane rings of both mol­ecules adopt a chair conformation. Intra­molecular O—H⋯N hydrogen bonds are observed. In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds into chains parallel to the [101] direction. The chains are further connected through C—H⋯O hydrogen bonds forming undulating layers parallel to the (-101) plane. The absolute configuration was assigned by reference to an unchanging chiral centre in the synthetic procedure.

Chemical context  

1,2-Amino­alcohols are important building blocks in the synthesis of natural products, pharmaceuticals and other materials (Möller, 1957). The classical synthetic approach towards amino­alcohols involves amino­lysis of epoxides with an excess of amines. There are some limitations to this classical approach, such as the requirement of elevated reaction temperatures in the case of less reactive amines, lower reactivity for sterically crowded amines/epoxides, and poor regioselectivity of the epoxide ring opening (Sello et al., 2006). To obviate these problems, various methodologies to undertake epoxide opening under milder conditions have been developed (Surendra et al., 2005), but there are still many limitations, such as the formation of bis­alkyl­ated products, longer reaction times, stoichiometric amounts of catalysts and harsh reaction conditions.

Recently, we have shown that calcium(II) compounds are very useful, environmentally friendly catalysts for several acid-catalysed reactions (Harrad et al., 2010). Moreover, calcium triflate works under almost neutral conditions. In a continuation of our ongoing program on the amino­lysis of 1,2-epoxides using a mild, practical and efficient method under solvent-free conditions (Outouch, Boualy, Ali et al., 2011; Outouch, Boualy, El Firdoussi et al., 2011; Outouch et al., 2014), we report herein the synthesis and crystal structure of a new amino­diol from ep­oxy­perillyl alcohol, which can be used as a chiral ligand for catalytic enanti­oselective transformations. The title compound was prepared by condensation of ep­oxy­perillyl alcohol with morpholine using a catalytic amount of Ca(CF3COO)2 under solvent-free conditions according to the procedure described previously (Outouch, Boualy, Ali et al., 2011; Outouch, Boualy, El Firdoussi et al., 2011).graphic file with name e-71-00079-scheme1.jpg

Structural commentary  

As shown in Fig. 1, there are two mol­ecules in the asymmetric unit of the title compound. In both mol­ecules, the cyclo­hexane rings adopt a chair conformation, with atoms C1/C4 and C15/C18 as flaps. The hydroxyl groups are all in axial positions. A chair conformation is also observed for the morpholine rings, with the N and O atoms as flaps. The mol­ecular conformation is enforced by an intra­molecular O—H⋯N hydrogen bond (Table 1).

Figure 1.

Figure 1

The mol­ecular structure of the two independent molecules of the title compound, with displacement ellipsoids drawn at the 30% probability level.

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
O2H2AN1 0.86(2) 1.91(2) 2.7118(19) 154(2)
O5H5AN2 0.83(3) 1.90(3) 2.6697(18) 155(3)
O1H1AO5i 0.84(3) 1.95(3) 2.7595(18) 164(3)
O4H4AO2 0.84(3) 2.00(3) 2.8249(17) 167(2)
C9H9BO6ii 0.99 2.35 3.269(2) 155
C24H24AO3iii 0.99 2.45 3.344(2) 150

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Supra­molecular features  

In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds (Table 1) involving the hydroxyl groups into chains running parallel to the [101] direction (Fig. 2). Moreover, the chains are further connected via C—H⋯O hydrogen bonds, forming undulating layers parallel to the (Inline graphic01) plane.

Figure 2.

Figure 2

A packing diagram of the title compound showing hydrogen bonds as dashed lines (see Table 1 for details).

Database survey  

The structures of related 1,4-substituted cyclo­hexane-1,2-diols have been reported recently by Byrne et al. (2004), Blair et al. (2007, 2010), Dams et al. (2004), Outouch, Boualy, Ali et al. (2011) and Outouch, Boualy, El Firdoussi et al. (2011). As found for the title compound, the cyclo­hexane-1,2-diol rings of these compounds adopt a chair conformation.

Synthesis and crystallization  

A mixture of morpholine (5.1 mmol) and ep­oxy­perillyl alcohol (5 mmol), prepared by epoxidation of (S)-(−) perillyl alcohol, was added to 5 mol% of Ca(CF3CO2)2 under solvent-free conditions. The mixture was stirred at 313 K for 72 h. After the reaction had finished, the mixture was extracted with ethyl acetate (3 × 10 ml), dried over Na2SO4 and the solvent was removed at reduced pressure. The title compound was purified by column chromatography on silica gel using hexa­ne/ethyl acetate (1:1 v/v) as eluent (yield 49%). Single crystals suitable for X-ray analysis were obtained by slow evaporation of the solvents.

1H NMR (CDCl3): δ [p.p.m.] 1.8 (s, 3H), 2.3 (m, 1H), 2.59 (m, 2H), 2.66 (s, 2H), 3.31 (m, 1H), 3.67 (m, 4H), 4.68 (s, 2H); 13CNMR (CDCl3) δ [p.p.m.] 16.9, 21.4, 27.1, 29.4, 32, 51, 62.5, 63.4, 65.9, 67.9, 104.6, 144.9.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms attached to oxygen could be found in a difference Fourier map and were freely refined. All other H atoms were placed in idealized positions with d(C—H) = 0.95–0.99 Å and refined using a riding model, with U iso(H) = 1.2 U eq(C) or 1.5 U eq(C) for methyl H atoms. A rotating model was adopted for the methyl groups. The absolute configuration was not established by anomalous scattering effects, the enanti­omer was assigned by reference to an unchanging chiral center in the synthetic procedure.

Table 2. Experimental details.

Crystal data
Chemical formula C14H25NO3
M r 255.35
Crystal system, space group Monoclinic, P21
Temperature (K) 150
a, b, c () 6.3300(1), 22.0241(5), 10.1179(2)
() 95.2083(12)
V (3) 1404.74(5)
Z 4
Radiation type Mo K
(mm1) 0.08
Crystal size (mm) 0.44 0.42 0.28
 
Data collection
Diffractometer Bruker Kappa APEXII DUO
Absorption correction Multi-scan (SADABS; Bruker, 2008)
T min, T max 0.92, 0.98
No. of measured, independent and observed [I > 2(I)] reflections 42775, 6792, 6514
R int 0.027
(sin /)max (1) 0.660
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.031, 0.082, 1.06
No. of reflections 6792
No. of parameters 343
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
max, min (e 3) 0.24, 0.15
Absolute structure Flack x determined using 3097 quotients [(I +)(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter 0.21(19)

Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2009), SHELXS97, SHELXL2014 and SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989014027169/rz5144sup1.cif

e-71-00079-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014027169/rz5144Isup2.hkl

e-71-00079-Isup2.hkl (372.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014027169/rz5144Isup3.cml

CCDC reference: 1038806

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C14H25NO3 F(000) = 560
Mr = 255.35 Dx = 1.207 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
a = 6.3300 (1) Å Cell parameters from 9947 reflections
b = 22.0241 (5) Å θ = 2.7–28.8°
c = 10.1179 (2) Å µ = 0.08 mm1
β = 95.2083 (12)° T = 150 K
V = 1404.74 (5) Å3 Prism, colourless
Z = 4 0.44 × 0.42 × 0.28 mm

Data collection

Bruker Kappa APEXII DUO diffractometer 6792 independent reflections
Radiation source: fine-focus sealed tube 6514 reflections with I > 2σ(I)
Curved graphite monochromator Rint = 0.027
Detector resolution: 8.3333 pixels mm-1 θmax = 28.0°, θmin = 1.9°
φ and ω scans h = −8→7
Absorption correction: multi-scan (SADABS; Bruker, 2008) k = −29→29
Tmin = 0.92, Tmax = 0.98 l = −13→13
42775 measured reflections

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0479P)2 + 0.1776P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.082 (Δ/σ)max < 0.001
S = 1.06 Δρmax = 0.24 e Å3
6792 reflections Δρmin = −0.15 e Å3
343 parameters Absolute structure: Flack x determined using 3097 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraint Absolute structure parameter: 0.21 (19)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.7333 (2) 0.28883 (8) 0.90710 (15) 0.0222 (3)
C2 0.7379 (2) 0.25014 (8) 0.78061 (15) 0.0212 (3)
H2B 0.8889 0.2453 0.7609 0.025*
C3 0.6442 (3) 0.18737 (8) 0.79751 (16) 0.0231 (3)
H3A 0.7398 0.1640 0.8616 0.028*
H3B 0.6369 0.1658 0.7113 0.028*
C4 0.4205 (3) 0.18895 (8) 0.84677 (16) 0.0228 (3)
H4B 0.3248 0.2105 0.7780 0.027*
C5 0.4259 (3) 0.22604 (8) 0.97478 (17) 0.0258 (3)
H5B 0.2813 0.2285 1.0044 0.031*
H5C 0.5187 0.2057 1.0454 0.031*
C6 0.5091 (3) 0.28994 (8) 0.95188 (17) 0.0249 (3)
H6A 0.5096 0.3136 1.0352 0.030*
H6B 0.4128 0.3106 0.8835 0.030*
C7 0.8332 (3) 0.35171 (8) 0.88857 (18) 0.0268 (4)
H7A 0.8264 0.3750 0.9718 0.032*
H7B 0.9850 0.3458 0.8756 0.032*
C8 0.5642 (3) 0.42779 (8) 0.8175 (2) 0.0333 (4)
H8A 0.6201 0.4555 0.8895 0.040*
H8B 0.4525 0.4023 0.8517 0.040*
C9 0.4707 (3) 0.46446 (8) 0.7005 (2) 0.0359 (4)
H9A 0.4120 0.4367 0.6296 0.043*
H9B 0.3531 0.4898 0.7280 0.043*
C10 0.7961 (3) 0.46608 (8) 0.61057 (19) 0.0291 (4)
H10A 0.9052 0.4926 0.5766 0.035*
H10B 0.7409 0.4390 0.5374 0.035*
C11 0.8970 (3) 0.42814 (8) 0.72373 (18) 0.0267 (3)
H11A 1.0109 0.4027 0.6918 0.032*
H11B 0.9615 0.4551 0.7946 0.032*
C12 0.3362 (3) 0.12475 (8) 0.85890 (19) 0.0278 (3)
C13 0.2009 (4) 0.10122 (10) 0.7415 (3) 0.0477 (6)
H13A 0.1600 0.0592 0.7580 0.072*
H13B 0.2808 0.1027 0.6629 0.072*
H13C 0.0733 0.1264 0.7263 0.072*
C14 0.3850 (4) 0.08997 (9) 0.9646 (2) 0.0404 (5)
H14A 0.3336 0.0495 0.9662 0.048*
H14B 0.4712 0.1056 1.0386 0.048*
C15 0.1605 (2) 0.29160 (7) 0.44014 (15) 0.0190 (3)
C16 −0.0367 (2) 0.32633 (7) 0.37967 (15) 0.0188 (3)
H16 −0.1437 0.3279 0.4465 0.023*
C17 0.0177 (2) 0.39080 (7) 0.34182 (16) 0.0219 (3)
H17A 0.0615 0.4141 0.4235 0.026*
H17B −0.1106 0.4104 0.2978 0.026*
C18 0.1962 (2) 0.39340 (7) 0.24867 (16) 0.0216 (3)
H18 0.1467 0.3708 0.1659 0.026*
C19 0.3920 (2) 0.36029 (7) 0.31378 (17) 0.0221 (3)
H19A 0.5057 0.3606 0.2527 0.026*
H19B 0.4453 0.3818 0.3960 0.026*
C20 0.3380 (2) 0.29471 (7) 0.34709 (16) 0.0213 (3)
H20A 0.4662 0.2745 0.3897 0.026*
H20B 0.2932 0.2726 0.2641 0.026*
C21 0.1026 (3) 0.22662 (7) 0.48039 (16) 0.0233 (3)
H21A 0.2351 0.2051 0.5115 0.028*
H21B 0.0150 0.2293 0.5564 0.028*
C22 0.1256 (3) 0.14898 (8) 0.30774 (19) 0.0280 (4)
H22A 0.1939 0.1195 0.3720 0.034*
H22B 0.2385 0.1728 0.2703 0.034*
C23 −0.0033 (3) 0.11532 (9) 0.1975 (2) 0.0344 (4)
H23A −0.0649 0.1448 0.1309 0.041*
H23B 0.0907 0.0876 0.1528 0.041*
C24 −0.3040 (3) 0.12046 (8) 0.3148 (2) 0.0295 (4)
H24A −0.4185 0.0963 0.3498 0.035*
H24B −0.3706 0.1503 0.2507 0.035*
C25 −0.1826 (3) 0.15376 (8) 0.42746 (17) 0.0245 (3)
H25A −0.2796 0.1808 0.4715 0.029*
H25B −0.1206 0.1243 0.4939 0.029*
C26 0.2417 (3) 0.45830 (8) 0.20956 (19) 0.0277 (4)
C27 0.3227 (4) 0.50158 (9) 0.3166 (2) 0.0448 (5)
H27A 0.3413 0.5418 0.2780 0.067*
H27B 0.4592 0.4870 0.3582 0.067*
H27C 0.2206 0.5042 0.3836 0.067*
C28 0.2082 (4) 0.47606 (11) 0.0848 (2) 0.0479 (6)
H28A 0.2356 0.5169 0.0616 0.057*
H28B 0.1568 0.4480 0.0182 0.057*
N1 0.7366 (2) 0.38889 (7) 0.77770 (14) 0.0231 (3)
N2 −0.0127 (2) 0.18982 (6) 0.37589 (13) 0.0201 (3)
O1 0.8751 (2) 0.25829 (6) 1.00335 (13) 0.0293 (3)
O2 0.62372 (19) 0.27966 (6) 0.66952 (11) 0.0238 (2)
O3 0.6273 (2) 0.50262 (6) 0.65029 (16) 0.0343 (3)
O4 0.2236 (2) 0.32243 (6) 0.56239 (12) 0.0256 (3)
O5 −0.12856 (18) 0.29577 (6) 0.26338 (11) 0.0218 (2)
O6 −0.1697 (2) 0.08119 (6) 0.24837 (15) 0.0340 (3)
H1A 0.876 (4) 0.2765 (12) 1.076 (3) 0.041 (7)*
H2A 0.657 (4) 0.3175 (11) 0.678 (2) 0.028 (5)*
H4A 0.334 (4) 0.3044 (11) 0.593 (3) 0.037 (6)*
H5A −0.121 (4) 0.2593 (14) 0.282 (3) 0.046 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0204 (7) 0.0277 (8) 0.0183 (7) 0.0030 (6) −0.0002 (5) −0.0015 (6)
C2 0.0194 (7) 0.0260 (8) 0.0185 (7) 0.0024 (6) 0.0031 (6) 0.0000 (6)
C3 0.0257 (7) 0.0241 (8) 0.0201 (7) 0.0035 (6) 0.0052 (6) −0.0001 (6)
C4 0.0222 (7) 0.0243 (8) 0.0222 (7) 0.0020 (6) 0.0031 (6) 0.0032 (6)
C5 0.0256 (8) 0.0288 (8) 0.0243 (8) 0.0026 (6) 0.0089 (6) 0.0011 (6)
C6 0.0251 (7) 0.0272 (8) 0.0233 (7) 0.0033 (6) 0.0067 (6) −0.0032 (6)
C7 0.0244 (8) 0.0298 (9) 0.0255 (8) −0.0022 (6) −0.0018 (6) −0.0032 (6)
C8 0.0315 (9) 0.0240 (8) 0.0468 (11) 0.0021 (7) 0.0166 (8) −0.0044 (8)
C9 0.0263 (9) 0.0216 (8) 0.0612 (13) 0.0044 (7) 0.0115 (8) 0.0018 (8)
C10 0.0266 (8) 0.0264 (8) 0.0351 (9) 0.0023 (6) 0.0082 (7) −0.0019 (7)
C11 0.0207 (7) 0.0285 (8) 0.0311 (9) −0.0024 (6) 0.0030 (6) −0.0033 (7)
C12 0.0259 (8) 0.0263 (8) 0.0318 (9) 0.0007 (6) 0.0061 (7) 0.0037 (7)
C13 0.0461 (12) 0.0315 (10) 0.0621 (15) −0.0090 (9) −0.0141 (11) 0.0070 (10)
C14 0.0572 (13) 0.0283 (9) 0.0367 (10) 0.0008 (9) 0.0094 (9) 0.0068 (8)
C15 0.0187 (6) 0.0196 (7) 0.0183 (7) 0.0005 (6) −0.0005 (5) −0.0021 (6)
C16 0.0162 (6) 0.0213 (7) 0.0191 (7) 0.0008 (5) 0.0020 (5) −0.0009 (5)
C17 0.0182 (7) 0.0202 (7) 0.0273 (8) 0.0024 (6) 0.0017 (6) −0.0007 (6)
C18 0.0203 (7) 0.0213 (7) 0.0229 (7) −0.0022 (6) 0.0005 (6) −0.0007 (6)
C19 0.0160 (6) 0.0225 (7) 0.0280 (8) −0.0013 (5) 0.0033 (6) −0.0021 (6)
C20 0.0167 (7) 0.0206 (7) 0.0267 (8) 0.0020 (6) 0.0023 (5) −0.0030 (6)
C21 0.0260 (8) 0.0226 (8) 0.0209 (8) −0.0003 (6) −0.0006 (6) 0.0029 (6)
C22 0.0224 (7) 0.0227 (8) 0.0406 (10) −0.0017 (6) 0.0127 (7) −0.0030 (7)
C23 0.0385 (10) 0.0277 (9) 0.0397 (10) −0.0078 (7) 0.0172 (8) −0.0096 (8)
C24 0.0216 (7) 0.0253 (8) 0.0421 (10) −0.0036 (6) 0.0052 (7) −0.0026 (7)
C25 0.0225 (7) 0.0229 (7) 0.0291 (8) −0.0008 (6) 0.0083 (6) 0.0027 (6)
C26 0.0241 (8) 0.0252 (8) 0.0334 (9) −0.0041 (6) 0.0008 (7) 0.0035 (7)
C27 0.0647 (15) 0.0237 (9) 0.0440 (12) −0.0115 (9) −0.0061 (10) 0.0017 (8)
C28 0.0576 (14) 0.0441 (12) 0.0398 (12) −0.0206 (10) −0.0071 (10) 0.0147 (9)
N1 0.0197 (6) 0.0220 (6) 0.0277 (7) 0.0012 (5) 0.0034 (5) −0.0034 (5)
N2 0.0195 (6) 0.0186 (6) 0.0225 (6) −0.0013 (5) 0.0040 (5) −0.0002 (5)
O1 0.0291 (6) 0.0371 (7) 0.0207 (6) 0.0061 (5) −0.0041 (5) 0.0004 (5)
O2 0.0275 (6) 0.0245 (6) 0.0188 (5) −0.0021 (4) −0.0013 (4) 0.0011 (4)
O3 0.0307 (7) 0.0207 (6) 0.0533 (9) 0.0033 (5) 0.0136 (6) 0.0011 (6)
O4 0.0268 (6) 0.0272 (6) 0.0218 (6) 0.0015 (5) −0.0047 (5) −0.0056 (5)
O5 0.0203 (5) 0.0220 (6) 0.0223 (6) −0.0013 (4) −0.0032 (4) −0.0001 (5)
O6 0.0328 (7) 0.0229 (6) 0.0478 (8) −0.0077 (5) 0.0124 (6) −0.0082 (6)

Geometric parameters (Å, º)

C1—O1 1.4308 (19) C15—C21 1.541 (2)
C1—C6 1.529 (2) C15—C16 1.543 (2)
C1—C2 1.540 (2) C16—O5 1.4321 (18)
C1—C7 1.541 (2) C16—C17 1.518 (2)
C2—O2 1.4355 (19) C16—H16 1.0000
C2—C3 1.520 (2) C17—C18 1.537 (2)
C2—H2B 1.0000 C17—H17A 0.9900
C3—C4 1.543 (2) C17—H17B 0.9900
C3—H3A 0.9900 C18—C26 1.518 (2)
C3—H3B 0.9900 C18—C19 1.534 (2)
C4—C12 1.520 (2) C18—H18 1.0000
C4—C5 1.529 (2) C19—C20 1.529 (2)
C4—H4B 1.0000 C19—H19A 0.9900
C5—C6 1.528 (2) C19—H19B 0.9900
C5—H5B 0.9900 C20—H20A 0.9900
C5—H5C 0.9900 C20—H20B 0.9900
C6—H6A 0.9900 C21—N2 1.472 (2)
C6—H6B 0.9900 C21—H21A 0.9900
C7—N1 1.476 (2) C21—H21B 0.9900
C7—H7A 0.9900 C22—N2 1.470 (2)
C7—H7B 0.9900 C22—C23 1.515 (3)
C8—N1 1.472 (2) C22—H22A 0.9900
C8—C9 1.509 (3) C22—H22B 0.9900
C8—H8A 0.9900 C23—O6 1.428 (2)
C8—H8B 0.9900 C23—H23A 0.9900
C9—O3 1.428 (2) C23—H23B 0.9900
C9—H9A 0.9900 C24—O6 1.424 (2)
C9—H9B 0.9900 C24—C25 1.506 (2)
C10—O3 1.424 (2) C24—H24A 0.9900
C10—C11 1.511 (3) C24—H24B 0.9900
C10—H10A 0.9900 C25—N2 1.470 (2)
C10—H10B 0.9900 C25—H25A 0.9900
C11—N1 1.476 (2) C25—H25B 0.9900
C11—H11A 0.9900 C26—C28 1.320 (3)
C11—H11B 0.9900 C26—C27 1.498 (3)
C12—C14 1.329 (3) C27—H27A 0.9800
C12—C13 1.493 (3) C27—H27B 0.9800
C13—H13A 0.9800 C27—H27C 0.9800
C13—H13B 0.9800 C28—H28A 0.9500
C13—H13C 0.9800 C28—H28B 0.9500
C14—H14A 0.9500 O1—H1A 0.84 (3)
C14—H14B 0.9500 O2—H2A 0.86 (2)
C15—O4 1.4354 (18) O4—H4A 0.84 (3)
C15—C20 1.531 (2) O5—H5A 0.83 (3)
O1—C1—C6 110.33 (13) O5—C16—C17 108.46 (12)
O1—C1—C2 104.34 (13) O5—C16—C15 110.28 (12)
C6—C1—C2 110.06 (13) C17—C16—C15 111.69 (12)
O1—C1—C7 105.45 (13) O5—C16—H16 108.8
C6—C1—C7 115.08 (14) C17—C16—H16 108.8
C2—C1—C7 110.94 (13) C15—C16—H16 108.8
O2—C2—C3 109.03 (13) C16—C17—C18 112.70 (13)
O2—C2—C1 110.74 (13) C16—C17—H17A 109.1
C3—C2—C1 111.89 (13) C18—C17—H17A 109.1
O2—C2—H2B 108.4 C16—C17—H17B 109.1
C3—C2—H2B 108.4 C18—C17—H17B 109.1
C1—C2—H2B 108.4 H17A—C17—H17B 107.8
C2—C3—C4 113.24 (13) C26—C18—C19 113.25 (13)
C2—C3—H3A 108.9 C26—C18—C17 111.25 (14)
C4—C3—H3A 108.9 C19—C18—C17 109.22 (13)
C2—C3—H3B 108.9 C26—C18—H18 107.6
C4—C3—H3B 108.9 C19—C18—H18 107.6
H3A—C3—H3B 107.7 C17—C18—H18 107.6
C12—C4—C5 114.17 (14) C20—C19—C18 110.82 (12)
C12—C4—C3 110.14 (13) C20—C19—H19A 109.5
C5—C4—C3 109.58 (14) C18—C19—H19A 109.5
C12—C4—H4B 107.6 C20—C19—H19B 109.5
C5—C4—H4B 107.6 C18—C19—H19B 109.5
C3—C4—H4B 107.6 H19A—C19—H19B 108.1
C6—C5—C4 110.19 (13) C19—C20—C15 111.65 (13)
C6—C5—H5B 109.6 C19—C20—H20A 109.3
C4—C5—H5B 109.6 C15—C20—H20A 109.3
C6—C5—H5C 109.6 C19—C20—H20B 109.3
C4—C5—H5C 109.6 C15—C20—H20B 109.3
H5B—C5—H5C 108.1 H20A—C20—H20B 108.0
C5—C6—C1 111.87 (13) N2—C21—C15 115.84 (13)
C5—C6—H6A 109.2 N2—C21—H21A 108.3
C1—C6—H6A 109.2 C15—C21—H21A 108.3
C5—C6—H6B 109.2 N2—C21—H21B 108.3
C1—C6—H6B 109.2 C15—C21—H21B 108.3
H6A—C6—H6B 107.9 H21A—C21—H21B 107.4
N1—C7—C1 116.42 (13) N2—C22—C23 109.96 (14)
N1—C7—H7A 108.2 N2—C22—H22A 109.7
C1—C7—H7A 108.2 C23—C22—H22A 109.7
N1—C7—H7B 108.2 N2—C22—H22B 109.7
C1—C7—H7B 108.2 C23—C22—H22B 109.7
H7A—C7—H7B 107.3 H22A—C22—H22B 108.2
N1—C8—C9 110.15 (16) O6—C23—C22 110.94 (15)
N1—C8—H8A 109.6 O6—C23—H23A 109.5
C9—C8—H8A 109.6 C22—C23—H23A 109.5
N1—C8—H8B 109.6 O6—C23—H23B 109.5
C9—C8—H8B 109.6 C22—C23—H23B 109.5
H8A—C8—H8B 108.1 H23A—C23—H23B 108.0
O3—C9—C8 111.02 (16) O6—C24—C25 111.56 (14)
O3—C9—H9A 109.4 O6—C24—H24A 109.3
C8—C9—H9A 109.4 C25—C24—H24A 109.3
O3—C9—H9B 109.4 O6—C24—H24B 109.3
C8—C9—H9B 109.4 C25—C24—H24B 109.3
H9A—C9—H9B 108.0 H24A—C24—H24B 108.0
O3—C10—C11 112.01 (15) N2—C25—C24 109.51 (14)
O3—C10—H10A 109.2 N2—C25—H25A 109.8
C11—C10—H10A 109.2 C24—C25—H25A 109.8
O3—C10—H10B 109.2 N2—C25—H25B 109.8
C11—C10—H10B 109.2 C24—C25—H25B 109.8
H10A—C10—H10B 107.9 H25A—C25—H25B 108.2
N1—C11—C10 110.28 (14) C28—C26—C27 121.16 (18)
N1—C11—H11A 109.6 C28—C26—C18 120.70 (18)
C10—C11—H11A 109.6 C27—C26—C18 118.13 (16)
N1—C11—H11B 109.6 C26—C27—H27A 109.5
C10—C11—H11B 109.6 C26—C27—H27B 109.5
H11A—C11—H11B 108.1 H27A—C27—H27B 109.5
C14—C12—C13 120.99 (18) C26—C27—H27C 109.5
C14—C12—C4 122.92 (18) H27A—C27—H27C 109.5
C13—C12—C4 116.03 (16) H27B—C27—H27C 109.5
C12—C13—H13A 109.5 C26—C28—H28A 120.0
C12—C13—H13B 109.5 C26—C28—H28B 120.0
H13A—C13—H13B 109.5 H28A—C28—H28B 120.0
C12—C13—H13C 109.5 C8—N1—C11 108.20 (14)
H13A—C13—H13C 109.5 C8—N1—C7 112.39 (14)
H13B—C13—H13C 109.5 C11—N1—C7 110.78 (13)
C12—C14—H14A 120.0 C22—N2—C25 108.76 (13)
C12—C14—H14B 120.0 C22—N2—C21 113.35 (13)
H14A—C14—H14B 120.0 C25—N2—C21 111.93 (13)
O4—C15—C20 110.29 (12) C1—O1—H1A 109.2 (18)
O4—C15—C21 105.41 (12) C2—O2—H2A 104.9 (15)
C20—C15—C21 114.16 (13) C10—O3—C9 109.32 (13)
O4—C15—C16 105.01 (12) C15—O4—H4A 104.7 (17)
C20—C15—C16 110.28 (13) C16—O5—H5A 105.3 (19)
C21—C15—C16 111.20 (13) C24—O6—C23 110.02 (13)
O1—C1—C2—O2 −172.39 (12) C16—C17—C18—C26 178.24 (13)
C6—C1—C2—O2 69.23 (17) C16—C17—C18—C19 −56.02 (17)
C7—C1—C2—O2 −59.30 (17) C26—C18—C19—C20 −178.30 (14)
O1—C1—C2—C3 65.74 (16) C17—C18—C19—C20 57.12 (17)
C6—C1—C2—C3 −52.63 (17) C18—C19—C20—C15 −58.41 (17)
C7—C1—C2—C3 178.83 (12) O4—C15—C20—C19 −60.07 (16)
O2—C2—C3—C4 −69.99 (16) C21—C15—C20—C19 −178.51 (13)
C1—C2—C3—C4 52.85 (18) C16—C15—C20—C19 55.46 (16)
C2—C3—C4—C12 179.02 (13) O4—C15—C21—N2 166.67 (13)
C2—C3—C4—C5 −54.58 (17) C20—C15—C21—N2 −72.14 (18)
C12—C4—C5—C6 −179.04 (14) C16—C15—C21—N2 53.40 (18)
C3—C4—C5—C6 56.89 (17) N2—C22—C23—O6 −58.5 (2)
C4—C5—C6—C1 −59.77 (18) O6—C24—C25—N2 59.16 (19)
O1—C1—C6—C5 −57.93 (18) C19—C18—C26—C28 120.7 (2)
C2—C1—C6—C5 56.68 (18) C17—C18—C26—C28 −115.8 (2)
C7—C1—C6—C5 −177.09 (14) C19—C18—C26—C27 −60.1 (2)
O1—C1—C7—N1 170.17 (14) C17—C18—C26—C27 63.4 (2)
C6—C1—C7—N1 −67.99 (18) C9—C8—N1—C11 57.64 (19)
C2—C1—C7—N1 57.78 (18) C9—C8—N1—C7 −179.71 (14)
N1—C8—C9—O3 −60.3 (2) C10—C11—N1—C8 −56.23 (18)
O3—C10—C11—N1 57.89 (18) C10—C11—N1—C7 −179.86 (14)
C5—C4—C12—C14 −40.6 (2) C1—C7—N1—C8 89.85 (18)
C3—C4—C12—C14 83.2 (2) C1—C7—N1—C11 −148.98 (14)
C5—C4—C12—C13 142.11 (19) C23—C22—N2—C25 57.74 (18)
C3—C4—C12—C13 −94.1 (2) C23—C22—N2—C21 −177.07 (14)
O4—C15—C16—O5 −173.83 (12) C24—C25—N2—C22 −57.80 (17)
C20—C15—C16—O5 67.37 (16) C24—C25—N2—C21 176.19 (13)
C21—C15—C16—O5 −60.32 (16) C15—C21—N2—C22 97.33 (17)
O4—C15—C16—C17 65.49 (16) C15—C21—N2—C25 −139.20 (14)
C20—C15—C16—C17 −53.31 (17) C11—C10—O3—C9 −58.3 (2)
C21—C15—C16—C17 179.00 (13) C8—C9—O3—C10 59.2 (2)
O5—C16—C17—C18 −66.97 (15) C25—C24—O6—C23 −58.9 (2)
C15—C16—C17—C18 54.76 (17) C22—C23—O6—C24 58.2 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2A···N1 0.86 (2) 1.91 (2) 2.7118 (19) 154 (2)
O5—H5A···N2 0.83 (3) 1.90 (3) 2.6697 (18) 155 (3)
O1—H1A···O5i 0.84 (3) 1.95 (3) 2.7595 (18) 164 (3)
O4—H4A···O2 0.84 (3) 2.00 (3) 2.8249 (17) 167 (2)
C9—H9B···O6ii 0.99 2.35 3.269 (2) 155
C24—H24A···O3iii 0.99 2.45 3.344 (2) 150

Symmetry codes: (i) x+1, y, z+1; (ii) −x, y+1/2, −z+1; (iii) −x, y−1/2, −z+1.

References

  1. Blair, M., Andrews, P. C., Fraser, B. H., Forsyth, C. M., Junk, P. C., Massi, M. & Tuck, K. L. (2007). Synthesis, pp. 1523–1527.
  2. Blair, M., Forsyth, C. M. & Tuck, K. L. (2010). Tetrahedron Lett. 51, 4808–4811.
  3. Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Byrne, C. M., Allen, S. D., Lobkovsky, E. B. & Coates, G. W. (2004). J. Am. Chem. Soc. 126, 11404–11405. [DOI] [PubMed]
  7. Dams, I., Bialonska, A., Ciunik, Z. & Wawrzencyk, C. (2004). Eur. J. Org. Chem. pp. 2662–2668.
  8. Harrad, M. A., Outtouch, R., Ait Ali, M., El Firdoussi, L., Karim, A. & Roucoux, A. (2010). Catal. Commun. 11, 442–446.
  9. Möller, F. (1957). Methoden der Organischen Chemie (Houben-Weyl), Vol. XI/1, edited by E. Müller, pp. 311–326. Stuttgart: Georg Thieme.
  10. Outouch, R., Boualy, B., Ali, M. A., Firdoussi, L. E. & Rizzoli, C. (2011). Acta Cryst. E67, o195–o196. [DOI] [PMC free article] [PubMed]
  11. Outouch, R., Boualy, B., El Firdoussi, L., Ait Ali, M., Rizzoli, C. & Spannenberg, A. (2011). Z. Kristallogr. New Cryst. Struct. 226, 279–280.
  12. Outouch, R., Rauchdi, M., Boualy, B., El Firdoussi, L., Roucoux, A. & Ait Ali, M. (2014). Acta Chim. Slov. 61, 67–72. [PubMed]
  13. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  14. Sello, G., Orsini, F., Bernasconi, S. & Di Gennaro, P. (2006). Tetrahedron Asymmetry, 17, 372–376.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Surendra, K., Krishnaveni, N. S. & Rao, K. R. (2005). Synlett, 3, 506–510.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989014027169/rz5144sup1.cif

e-71-00079-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014027169/rz5144Isup2.hkl

e-71-00079-Isup2.hkl (372.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014027169/rz5144Isup3.cml

CCDC reference: 1038806

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES