Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 1;71(Pt 1):73–75. doi: 10.1107/S2056989014027066

Crystal structure of fac-tri­chlorido­[tris­(pyridin-2-yl-N)amine]­chromium(III)

Yukiko Yamaguchi-Terasaki a, Takashi Fujihara b,*, Akira Nagasawa c, Sumio Kaizaki d
PMCID: PMC4331883  PMID: 25705455

The CrIII ion in the title compound is bonded to three N atoms that are constrained to a facial arrangement by the tris­(pyridin-2-yl)amine ligand and by three chloride ligands, leading to a distorted octa­hedral coordination sphere.

Keywords: crystal structure, chloride ligand, pyridine ligand, chromium(III) complex, facial structural arrangement.

Abstract

In the neutral complex mol­ecule of the title compound, fac-[CrCl3(tpa)] [tpa is tris­(pyridin-2-yl)amine; C15H12N4], the CrIII ion is bonded to three N atoms that are constrained to a facial arrangement by the tpa ligand and by three chloride ligands, leading to a distorted octa­hedral coordination sphere. The average Cr—N and Cr—Cl bond lengths are 2.086 (5) and 2.296 (4) Å, respectively. The complex mol­ecule is located on a mirror plane. In the crystal, a combination of C—H⋯N and C—H⋯Cl hydrogen-bonding inter­actions connect the mol­ecules into a three-dimensional network.

Chemical context  

One aspect of solvatochromism is the dependence of ligand-field parameters on the solvent coordination sphere. This has been demonstrated by measuring the ligand-field absorption spectra and/or multinuclear NMR spectra for several types of CrIII complexes in previous studies (Kaizaki, 1996; Kaizaki & Takemoto, 1990; Terasaki & Kaizaki, 1995; Terasaki et al., 1999; Yamaguchi-Terasaki et al., 2007a ,b ,c ). As a part of the above-mentioned systematic investigations, we report here the crystal structure of the title compound, fac-[CrCl3(tpa)], (I), where tpa is tris­(pyridin-2-yl)amine.graphic file with name e-71-00073-scheme1.jpg

Structural commentary  

The mol­ecular structure of (I) is illustrated in Fig. 1. The CrIII ion is coordinated by three N atoms that are constrained to a facial arrangement by the tpa ligand and three chloride ligands in a slightly distorted octa­hedral geometry. The entire complex mol­ecule is located on a mirror plane. The average Cr—N bond length of 2.086 (5) Å is comparable to that in the related tpa complex cation fac-[Cr(tpa)(H2O)3]3+ [2.040 (1) Å; Terasaki et al., 2004]. In addition, the average Cr—Cl bond length of the coordinating chlorine atoms being in trans positions to the N atoms [2.296 (4) Å] is similar to those found for other pyridine-chromium(III) complexes, such as mer-[CrCl3(terpy)] [terpy is 2,2′,2′′-terpyridine; C15H11N3; 2.292 (1) Å] (Cloete et al., 2007); mer-[CrCl3py3] [py is pyridine, C5H5N; 2.320 (7) Å] (Howard & Hardcastle, 1985) or mer-[CrCl3(Etpy)3] [Etpy is 4-ethyl­pyridine, C7H9N3; 2.320 (7) Å] (Modec et al., 2000). All bond lengths and angles within the pyridine rings are within normal ranges. The dihedral angles between the least-squares planes of the pyridine rings are 58.33 (6) and 63.37 (8)°.

Figure 1.

Figure 1

The mol­ecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (′) x, −y + Inline graphic, z.]

Supra­molecular features  

The chlorine atoms act as hydrogen-bond acceptors, forming inter­molecular C—H⋯Cl hydrogen bonds with the pyridine rings (Fig. 2, Table 1). In addition, C—H⋯N hydrogen-bonding inter­actions are also present, consolidating the mol­ecules into a three-dimensional network.

Figure 2.

Figure 2

Hydrogen-bonding inter­actions in the crystal structure of (I), shown as black dashed lines. [Symmetry codes: (ii) x, −y + Inline graphic, z − 1; (iii) x, y, z − 1; (iv) x + Inline graphic, y, −z + Inline graphic; (v) x + Inline graphic, −y + Inline graphic, −z + Inline graphic; (vi) x + Inline graphic, −y + Inline graphic, −z + Inline graphic.]

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C7H7N1i 0.95 2.75 3.578(5) 146
C7H7N1ii 0.95 2.75 3.578(5) 146
C9H9Cl1iii 0.95 2.82 3.447(4) 124
C9H9Cl1iv 0.95 2.82 3.447(4) 124
C4H4Cl2v 0.95 2.77 3.534(4) 138

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Synthesis and crystallization  

fac-[CrCl3(tpa)] was synthesized according to a previously reported procedure (Kaizaki & Legg, 1994). Green crystals of (I) suitable for X-ray analysis were obtained by slow cooling from the reaction solution. UV–vis(DMSO): λ max() = 720 (16), 645 (37), 464 (59) nm (L mol−1 cm−1). Elemental analysis, calculated for C15H12Cl3CrN4: C, 44.31, H, 2.97, N, 13.78%; found: C, 44.29; H, 2.99; N, 13.76%.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms were placed in calculated positions, with C—H = 0.95 Å, and refined using a riding model, with U iso(H) = 1.2U eq.

Table 2. Experimental details.

Crystal data
Chemical formula [CrCl3(C15H12N4)]
M r 406.64
Crystal system, space group Orthorhombic, P n m a
Temperature (K) 150
a, b, c () 15.152(13), 13.704(12), 8.014(7)
V (3) 1664(2)
Z 4
Radiation type Mo K
(mm1) 1.17
Crystal size (mm) 0.06 0.05 0.04
 
Data collection
Diffractometer Bruker APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2014)
No. of measured, independent and observed [I > 2(I)] reflections 15895, 1779, 1401
R int 0.061
(sin /)max (1) 0.625
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.038, 0.113, 1.20
No. of reflections 1779
No. of parameters 118
H-atom treatment H-atom parameters constrained
max, min (e 3) 0.66, 0.51

Computer programs: APEX2, SAINT and XPREP (Bruker, 2014), SHELXS2014, SHELXL2014 and XCIF (Sheldrick, 2008) and ORTEP-3 for Windows (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989014027066/wm5095sup1.cif

e-71-00073-sup1.cif (503.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014027066/wm5095Isup2.hkl

e-71-00073-Isup2.hkl (87.7KB, hkl)

CCDC reference: 1038512

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the programs of the Grants-in-Aid for Scientific Research (to TF, No. 23510115) from the Japan Society for the Promotion of Science.

supplementary crystallographic information

Crystal data

[CrCl3(C15H12N4)] Dx = 1.623 Mg m3
Mr = 406.64 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pnma Cell parameters from 3388 reflections
a = 15.152 (13) Å θ = 2.7–26.4°
b = 13.704 (12) Å µ = 1.17 mm1
c = 8.014 (7) Å T = 150 K
V = 1664 (2) Å3 Needle, green
Z = 4 0.06 × 0.05 × 0.04 mm
F(000) = 820

Data collection

Bruker APEXII CCD area-detector diffractometer 1779 independent reflections
Radiation source: Bruker TXS fine-focus rotating anode 1401 reflections with I > 2σ(I)
Bruker Helios multilayer confocal mirror monochromator Rint = 0.061
Detector resolution: 8.333 pixels mm-1 θmax = 26.4°, θmin = 2.7°
φ and ω scans h = −18→18
Absorption correction: multi-scan (SADABS; Bruker, 2014) k = −17→17
Tmin = ?, Tmax = ? l = −10→10
15895 measured reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038 H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0593P)2 + 0.050P] where P = (Fo2 + 2Fc2)/3
S = 1.20 (Δ/σ)max < 0.001
1779 reflections Δρmax = 0.66 e Å3
118 parameters Δρmin = −0.51 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) - 0.0000 (0.0001) x + 13.7040 (0.0118) y - 0.0000 (0.0000) z = 3.4260 (0.0030) * 0.0000 (0.0000) N2 * 0.0000 (0.0000) C6 * 0.0000 (0.0000) C7 * 0.0000 (0.0000) C8 * 0.0000 (0.0000) C9 * 0.0000 (0.0000) C10 Rms deviation of fitted atoms = 0.0000 - 0.2014 (0.0170) x - 7.1958 (0.0145) y + 6.8195 (0.0076) z = 4.9979 (0.0213) Angle to previous plane (with approximate esd) = 58.326 ( 0.080 ) * -0.0024 (0.0017) N1_$6 * -0.0057 (0.0019) C1_$6 * 0.0081 (0.0020) C2_$6 * -0.0029 (0.0020) C3_$6 * -0.0049 (0.0019) C4_$6 * 0.0078 (0.0018) C5_$6 Rms deviation of fitted atoms = 0.0057 0.2014 (0.0171) x + 7.1958 (0.0145) y + 6.8195 (0.0076) z = 8.8847 (0.0184) Angle to previous plane (with approximate esd) = 63.371 ( 0.081 ) * -0.0024 (0.0017) N1 * -0.0057 (0.0019) C1 * 0.0081 (0.0020) C2 * -0.0029 (0.0020) C3 * -0.0049 (0.0019) C4 * 0.0078 (0.0018) C5 Rms deviation of fitted atoms = 0.0057

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.89047 (17) 0.06834 (18) 1.2036 (3) 0.0287 (6)
H1 0.8290 0.0568 1.2158 0.034*
C2 0.94935 (19) 0.0033 (2) 1.2726 (4) 0.0336 (7)
H2 0.9287 −0.0516 1.3336 0.040*
C3 1.0382 (2) 0.0186 (2) 1.2521 (4) 0.0355 (7)
H3 1.0796 −0.0262 1.2972 0.043*
C4 1.06674 (17) 0.0997 (2) 1.1654 (4) 0.0309 (6)
H4 1.1279 0.1117 1.1495 0.037*
C5 1.00429 (16) 0.16273 (18) 1.1026 (3) 0.0224 (6)
C10 1.0039 (2) 0.2500 0.8449 (5) 0.0239 (8)
C6 0.8905 (3) 0.2500 0.6541 (5) 0.0328 (9)
H6 0.8292 0.2500 0.6295 0.039*
C7 0.9499 (3) 0.2500 0.5256 (5) 0.0378 (10)
H7 0.9295 0.2500 0.4136 0.045*
C8 1.0383 (3) 0.2500 0.5577 (5) 0.0358 (10)
H8 1.0797 0.2500 0.4688 0.043*
C9 1.0667 (2) 0.2500 0.7224 (5) 0.0293 (9)
H9 1.1277 0.2500 0.7490 0.035*
Cl1 0.75326 (4) 0.37578 (5) 0.89695 (10) 0.0388 (2)
Cl2 0.75220 (6) 0.2500 1.26071 (14) 0.0379 (3)
Cr1 0.83104 (4) 0.2500 1.01679 (7) 0.0239 (2)
N1 0.91747 (13) 0.14774 (15) 1.1195 (3) 0.0225 (5)
N2 0.91684 (19) 0.2500 0.8144 (4) 0.0256 (7)
N3 1.03099 (19) 0.2500 1.0163 (4) 0.0227 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0299 (13) 0.0202 (13) 0.0360 (16) −0.0023 (11) 0.0030 (12) 0.0013 (12)
C2 0.0433 (16) 0.0167 (13) 0.0407 (17) 0.0001 (12) 0.0019 (13) 0.0046 (12)
C3 0.0413 (16) 0.0190 (14) 0.0462 (18) 0.0045 (12) −0.0051 (13) 0.0039 (13)
C4 0.0268 (13) 0.0264 (14) 0.0394 (16) 0.0011 (11) −0.0038 (12) −0.0018 (13)
C5 0.0259 (13) 0.0145 (13) 0.0267 (14) 0.0022 (10) −0.0001 (10) −0.0007 (10)
C10 0.0296 (19) 0.0151 (17) 0.027 (2) 0.000 0.0023 (16) 0.000
C6 0.039 (2) 0.024 (2) 0.035 (2) 0.000 −0.0078 (19) 0.000
C7 0.061 (3) 0.027 (2) 0.026 (2) 0.000 0.000 (2) 0.000
C8 0.052 (3) 0.022 (2) 0.034 (2) 0.000 0.015 (2) 0.000
C9 0.034 (2) 0.0163 (18) 0.038 (2) 0.000 0.0086 (18) 0.000
Cl1 0.0309 (4) 0.0240 (4) 0.0615 (5) 0.0046 (3) −0.0127 (3) 0.0036 (3)
Cl2 0.0295 (5) 0.0309 (6) 0.0534 (7) 0.000 0.0160 (4) 0.000
Cr1 0.0191 (3) 0.0170 (3) 0.0356 (4) 0.000 −0.0005 (2) 0.000
N1 0.0240 (11) 0.0161 (10) 0.0276 (12) −0.0001 (8) 0.0011 (9) −0.0018 (9)
N2 0.0288 (16) 0.0196 (16) 0.0285 (17) 0.000 −0.0012 (13) 0.000
N3 0.0225 (15) 0.0162 (15) 0.0295 (17) 0.000 0.0011 (12) 0.000

Geometric parameters (Å, º)

C1—N1 1.344 (3) C6—C7 1.367 (6)
C1—C2 1.377 (4) C6—H6 0.9500
C1—H1 0.9500 C7—C8 1.363 (7)
C2—C3 1.372 (4) C7—H7 0.9500
C2—H2 0.9500 C8—C9 1.388 (6)
C3—C4 1.380 (4) C8—H8 0.9500
C3—H3 0.9500 C9—H9 0.9500
C4—C5 1.376 (4) Cl1—Cr1 2.2983 (15)
C4—H4 0.9500 Cl2—Cr1 2.2909 (19)
C5—N1 1.338 (3) Cr1—N2 2.079 (3)
C5—N3 1.440 (3) Cr1—N1i 2.087 (2)
C10—N2 1.342 (4) Cr1—N1 2.087 (2)
C10—C9 1.366 (5) Cr1—Cl1i 2.2983 (15)
C10—N3 1.434 (5) N3—C5i 1.440 (3)
C6—N2 1.345 (5)
N1—C1—C2 121.9 (3) C10—C9—C8 117.9 (4)
N1—C1—H1 119.1 C10—C9—H9 121.1
C2—C1—H1 119.1 C8—C9—H9 121.1
C3—C2—C1 119.2 (3) N2—Cr1—N1i 85.14 (10)
C3—C2—H2 120.4 N2—Cr1—N1 85.14 (10)
C1—C2—H2 120.4 N1i—Cr1—N1 84.35 (13)
C2—C3—C4 119.4 (3) N2—Cr1—Cl2 172.72 (9)
C2—C3—H3 120.3 N1i—Cr1—Cl2 89.46 (8)
C4—C3—H3 120.3 N1—Cr1—Cl2 89.46 (8)
C5—C4—C3 118.3 (3) N2—Cr1—Cl1i 89.69 (8)
C5—C4—H4 120.9 N1i—Cr1—Cl1i 171.91 (6)
C3—C4—H4 120.9 N1—Cr1—Cl1i 89.03 (8)
N1—C5—C4 122.9 (2) Cl2—Cr1—Cl1i 95.12 (5)
N1—C5—N3 116.9 (2) N2—Cr1—Cl1 89.69 (8)
C4—C5—N3 120.2 (2) N1i—Cr1—Cl1 89.03 (8)
N2—C10—C9 123.6 (4) N1—Cr1—Cl1 171.91 (6)
N2—C10—N3 117.1 (3) Cl2—Cr1—Cl1 95.12 (5)
C9—C10—N3 119.3 (3) Cl1i—Cr1—Cl1 97.18 (7)
N2—C6—C7 121.6 (4) C5—N1—C1 118.3 (2)
N2—C6—H6 119.2 C5—N1—Cr1 118.28 (17)
C7—C6—H6 119.2 C1—N1—Cr1 123.39 (18)
C8—C7—C6 120.3 (4) C10—N2—C6 117.7 (3)
C8—C7—H7 119.8 C10—N2—Cr1 118.2 (2)
C6—C7—H7 119.8 C6—N2—Cr1 124.0 (3)
C7—C8—C9 118.9 (4) C10—N3—C5 112.33 (18)
C7—C8—H8 120.5 C10—N3—C5i 112.33 (18)
C9—C8—H8 120.5 C5—N3—C5i 112.4 (3)
N1—C1—C2—C3 −1.4 (4) C2—C1—N1—Cr1 −178.7 (2)
C1—C2—C3—C4 1.1 (4) C9—C10—N2—C6 0.000 (1)
C2—C3—C4—C5 0.2 (4) N3—C10—N2—C6 180.000 (1)
C3—C4—C5—N1 −1.2 (4) C9—C10—N2—Cr1 180.000 (1)
C3—C4—C5—N3 177.9 (2) N3—C10—N2—Cr1 0.000 (1)
N2—C6—C7—C8 0.000 (1) C7—C6—N2—C10 0.000 (1)
C6—C7—C8—C9 0.000 (1) C7—C6—N2—Cr1 180.000 (1)
N2—C10—C9—C8 0.000 (1) N2—C10—N3—C5 63.9 (2)
N3—C10—C9—C8 180.000 (1) C9—C10—N3—C5 −116.1 (2)
C7—C8—C9—C10 0.000 (1) N2—C10—N3—C5i −63.9 (2)
C4—C5—N1—C1 1.0 (4) C9—C10—N3—C5i 116.1 (2)
N3—C5—N1—C1 −178.1 (2) N1—C5—N3—C10 −64.4 (3)
C4—C5—N1—Cr1 −179.9 (2) C4—C5—N3—C10 116.4 (3)
N3—C5—N1—Cr1 1.0 (3) N1—C5—N3—C5i 63.4 (4)
C2—C1—N1—C5 0.3 (4) C4—C5—N3—C5i −115.8 (3)

Symmetry code: (i) x, −y+1/2, z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C7—H7···N1ii 0.95 2.75 3.578 (5) 146
C7—H7···N1iii 0.95 2.75 3.578 (5) 146
C9—H9···Cl1iv 0.95 2.82 3.447 (4) 124
C9—H9···Cl1v 0.95 2.82 3.447 (4) 124
C4—H4···Cl2vi 0.95 2.77 3.534 (4) 138

Symmetry codes: (ii) x, −y+1/2, z−1; (iii) x, y, z−1; (iv) x+1/2, y, −z+3/2; (v) x+1/2, −y+1/2, −z+3/2; (vi) x+1/2, −y+1/2, −z+5/2.

References

  1. Bruker (2014). APEX2, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cloete, N., Visser, H. G. & Roodt, A. (2007). Acta Cryst. E63, m45–m47.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Howard, S. A. & Hardcastle, K. I. (1985). J. Crystallogr. Spectrosc. Res. 15, 643–649.
  5. Kaizaki, S. (1996). Trends Inorg. Chem. 6, 105–136.
  6. Kaizaki, S. & Legg, J. I. (1994). Inorg. Chim. Acta, 218, 179–184.
  7. Kaizaki, S. & Takemoto, H. (1990). Inorg. Chem. 29, 4960–4964.
  8. Modec, B., Brenčnič, J. V. & Giester, G. (2000). J. Chem. Crystallogr. 30, 345–349.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Terasaki, Y., Fujihara, T., Nagasawa, A. & Kaizaki, S. (2004). Acta Cryst. E60, m854–m856.
  11. Terasaki, Y., Fujihara, T., Schönherr, T. & Kaizaki, S. (1999). Inorg. Chim. Acta, 295, 84–90.
  12. Terasaki, Y. & Kaizaki, S. (1995). J. Chem. Soc. Dalton Trans. pp. 2837–2841.
  13. Yamaguchi-Terasaki, Y., Fujihara, A. & Kaizaki, S. (2007b). Eur. J. Inorg. Chem. 21, 3394–3399.
  14. Yamaguchi-Terasaki, Y., Fujihara, A. & Kaizaki, S. (2007c). Eur. J. Inorg. Chem. 21, 3400–3404.
  15. Yamaguchi-Terasaki, Y., Fujihara, T., Nagasawa, A. & Kaizaki, S. (2007a). Acta Cryst. E63, m593–m595. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989014027066/wm5095sup1.cif

e-71-00073-sup1.cif (503.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014027066/wm5095Isup2.hkl

e-71-00073-Isup2.hkl (87.7KB, hkl)

CCDC reference: 1038512

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES