Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 1;71(Pt 1):100–103. doi: 10.1107/S2056989014027479

Crystal structure of bis­[trans-(ethane-1,2-di­amine-κ2 N,N′)bis­(thio­cyanato-κN)chromium(III)] tetra­chlorido­zincate from synchrotron data

Dohyun Moon a, Jong-Ha Choi b,*
PMCID: PMC4331884  PMID: 25705463

The CrIII atoms in the title compound show a distorted octa­hedral coordination with four N atoms of two ethane-1,2-di­amine ligands (en) in the equatorial plane and two N-coordinated NCS groups in axial positions. The [ZnCl4]2− anion has a slightly distorted tetra­hedral geometry.

Keywords: Crystal structure; ethane-1,2-di­amine; thio­cyanate; trans isomer; chromium(III) complex; synchrotron data; hydrogen bonds

Abstract

The structure of the title compound, [Cr(NCS)2(C2H8N2)2]2[ZnCl4], has been determined from synchrotron data. In the asymmetric unit, there are four independent halves of the CrIII complex cations, each of which lies on an inversion centre, and one tetra­chlorido­zincate anion in a general position. The CrIII atoms are coordinated by the four N atoms of two ethane-1,2-di­amine (en) ligands in the equatorial plane and two N-bound NCS anions in a trans arrangement, displaying a slightly distorted octa­hedral geometry with crystallographic inversion symmetry. The Cr—N(en) and Cr—N(NCS) bond lengths range from 2.0653 (10) to 2.0837 (10) Å and from 1.9811 (10) to 1.9890 (10) Å, respectively. The five-membered metalla-rings are in stable gauche conformations. The [ZnCl4]2− anion has a distorted tetra­hedral geometry. The crystal structure is stabilized by inter­molecular hydrogen bonds involving the en NH2 or CH2 groups as donors and chloride ligands of the anion and S atoms of NCS ligands as acceptors.

Chemical context  

The study of geometrical isomers in octa­hedral transition metal complexes with bidentate amines has been an area of intense activity and has provided much basic structural information and insights into their spectroscopic properties. Ethane-1,2-di­amine (en) can act as a bidentate ligand to a central metal ion through its two nitro­gen atoms, forming a five-membered ring. The [Cr(en)2 L 2]+ (where L is a monodentate ligand) cation can form either trans or cis geometric isomers. Infrared, electronic absorption and emission spectral properties are useful in determining the geometric isomers of chromium(III) complexes with mixed ligands (Choi, 2000a ,b ; Choi et al., 2002, 2004a ,b ; Choi & Moon, 2014). However, it should be noted that the geometric assignments based on spectroscopic studies are much less conclusive. In addition, NCS is an ambidentate ligand because it can coordinate to a transition metal through the nitro­gen (M—NCS), or the sulfur (M—SCN), or both (M–-NCS—M). In general, hard metals such as chromium, nickel and cobalt tend to form metal–NCS bonds, whereas the soft metals such as mercury, rhodium, iridium, palladium and platinum tend to bind through the S atom. The oxidation state of the metal, the nature of other ligands and steric factors also influence the mode of coordin­ation.

Here, we report on the synthesis and structure of [Cr(en)2(NCS)2]2[ZnCl4] in order to determine the bonding mode of the thio­cyanate group and the geometric features of the two en ligands, the two NCS groups and the [ZnCl4]2− anion. graphic file with name e-71-00100-scheme1.jpg

Structural commentary  

Structural analysis shows that there are four crystallographically independent CrIII complex cations in which the four nitro­gen atoms of the two en ligands occupy the equatorial sites and the two thio­cyanate anions coordinate to the CrIII atom through their N atoms in a trans configuration. Fig. 1 shows an ellipsoid plot of two independent complex cations and one anion in trans-[Cr(en)2(NCS)2]2[ZnCl4], with the atom-numbering scheme.

Figure 1.

Figure 1

A perspective view (60% probability ellipsoids) of two independent chromium(III) complex cations and the unique tetra­chlorido­zincate anion in trans-[Cr(en)2(NCS)2]2[ZnCl4]. The symmetry code for A′ atoms is −x + 2, −y, −z + 1 and for B′ atoms, the symmetry code is −x + 1, −y + 1, −z + 1.

The asymmetric unit contains four halves of the [Cr(en)2(NCS)2]+ complex cations and one [ZnCl4]2− anion. The four CrIII atoms are located on crystallographic centers of symmetry, so these complex cations have mol­ecular Ci symmetry. The spatial configuration of the bidentate en ring is a stable gauche form, which has been observed in other compounds (Brencic & Leban, 1981; Choi et al., 2010). The carbon atoms in the en ring are arranged symmetrically above and below the plane defined by the chromium and the en nitro­gen atoms. The two Cr–en rings are in δ and λ conformations as the CrIII atom occupies a special position with inversion symmetry. The Cr—N bond lengths for the en ligand range from 2.0653 (10) to 2.0837 (10) Å, in good agreement with those observed in trans-[Cr(en)2F2]ClO4 (Brencic & Leban, 1981), trans-[Cr(en)2Br2]ClO4 (Choi et al., 2010), trans-[Cr(Me2tn)2Cl2]2ZnCl4 (Me2tn = 2,2-di­methyl­propane-1,3-di­amine) (Choi et al., 2011) and trans-[Cr(2,2,3-tet)F2]ClO4 (2,2,3-tet = 1,4,7,11-tetra­aza­undeca­ne) (Choi & Moon, 2014). The Cr—N(CS) distances lie in the range 1.9811 (10) to 1.9890 (10) Å and are similar to the average values of 1.9826 (15) and 1.996 (15) Å found in trans-[Cr(Me2tn)2(NCS)2]NCS (Choi & Lee, 2009) and cis-[Cr(cyclam)(NCS)2]NCS (cyclam = 1,4,8,11-tetra­aza­cyclo­tetra­deca­ne) (Moon et al., 2013), respectively. The N-coord­in­ating ­thio­cyanato groups are almost linear with N—C—S angles ranging from 177.11 (8) to 179.15 (9)°. The [ZnCl4]2− counter-anion has a distorted tetra­hedral geometry due to the influence of hydrogen bonding on the Zn—Cl bond lengths and the Cl—Zn—Cl angles. Zn—Cl bond lengths range from 2.2518 (8) to 2.2923 (8) Å and the Cl—Zn—Cl angles are in the range 106.71 (2)–112.49 (2)°.

Supra­molecular features  

In the asymmetric unit, a series of N—H⋯Cl and C—H⋯Cl hydrogen bonds link each anion to the four neighbouring cations, while N—H⋯S and C—H⋯S contacts inter­connect the complex cations (Fig. 2, Table 1). An extensive array of additional, similar contacts generate a three-dimensional network of mol­ecules stacked along the a-axis direction.

Figure 2.

Figure 2

The mol­ecular packing for trans-[Cr(en)2(NCS)2]2[ZnCl4], viewed along the a axis. Hydrogen bonding is denoted by dashed liness, N—H⋯S (purple), C—H⋯S (grey), N—H⋯Cl (red), and C—H⋯Cl (blue).

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N1AH1A1Cl3E i 0.91 2.48 3.3700(13) 165
N2AH2A1Cl1E ii 0.91 2.50 3.3483(13) 155
N2AH2A2Cl3E 0.91 2.90 3.5797(12) 133
C1AH1A3S1A iii 0.99 2.91 3.5983(15) 127
C2AH2A3Cl3E 0.99 2.91 3.5533(15) 123
C2AH2A4S1B iv 0.99 2.94 3.6270(15) 128
N1BH1B1Cl1E 0.91 2.45 3.2813(13) 152
N1BH1B2S1A iii 0.91 2.81 3.5401(13) 138
N2BH2B1Cl4E iv 0.91 2.49 3.3532(13) 159
N2BH2B2Cl1E v 0.91 2.77 3.4934(12) 138
C1BH1B3S1A iii 0.99 2.98 3.5910(14) 121
C1BH1B3S1B v 0.99 2.87 3.6440(14) 136
C2BH2B3Cl1E v 0.99 2.93 3.5309(14) 120
N1CH1C1Cl4E 0.91 2.40 3.3058(12) 171
N1CH1C2S1B 0.91 2.73 3.4473(14) 137
N2CH2C1S1C iii 0.91 2.50 3.2836(12) 144
N2CH2C2S1B vi 0.91 2.75 3.4063(11) 130
N2CH2C2S1D iii 0.91 2.88 3.5893(13) 135
C1CH1C4Cl1E 0.99 2.86 3.7421(13) 149
N1DH1D1S1C 0.91 2.61 3.4937(13) 164
N1DH1D2Cl2E 0.91 2.49 3.3919(12) 172
N2DH2D1S1C vii 0.91 2.78 3.6225(12) 155
N2DH2D2S1D viii 0.91 2.67 3.3564(12) 133
C1DH1D3Cl3E 0.99 2.88 3.7357(14) 145
C1DH1D4Cl2E ii 0.99 2.98 3.7397(12) 135

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic.

Database survey  

A search of the Cambridge Structural Database (Version 5.35, May 2014 with one update; Groom & Allen, 2014) indicates a total of 13 hits for CrIII complexes with a [Cr(en)2 L 2]+ unit. The crystal structures of trans-[Cr(en)2Cl2]Cl·HCl·2H2O (Ooi et al., 1960), trans-[Cr(en)2F2]X (X = ClO4, Cl, Br) (Brencic & Leban, 1981), cis-[Cr(en)2F2]ClO4 (Brencic et al., 1987), trans-[Cr(en)2Br2]ClO4 (Choi et al., 2010) have been reported previously. However, no structures of salts of [Cr(en)2(NCS)2]+ with any anions were found.

Synthesis and crystallization  

All chemicals were reagent-grade materials and were used without further purification. The starting material, trans-[Cr(en)2(NCS)2]ClO4 was prepared according to the literature (Sandrini et al., 1978). The crude perchlorate salt (0.10 g) was dissolved in 5 mL of 0.1 M HCl at 333 K and added to 2 mL of 6 M HCl containing 0.3 g of solid ZnCl2. The resulting solution was filtered and allowed to stand at room temperature for two days to give red crystals of the tetra­chlorido­zincate salt suitable for X-ray structural analysis.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen atoms bound to carbon or nitro­gen were placed in calculated positions (C—H = 0.95, N—H = 0.91 Å), and were included in the refinement using the riding-model approximation with U iso(H) set to 1.2U eq(C, N).

Table 2. Experimental details.

Crystal data
Chemical formula [Cr(NCS)2(C2H8N2)2]2[ZnCl4]
M r 783.90
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 100
a, b, c () 7.6870(15), 13.853(3), 14.560(3)
, , () 92.74(3), 92.76(3), 90.21(3)
V (3) 1546.9(5)
Z 2
Radiation type Synchrotron, = 0.62998
(mm1) 1.50
Crystal size (mm) 0.10 0.03 0.03
 
Data collection
Diffractometer ADSC Q210 CCD area detector
Absorption correction Empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski Minor, 1997)
T min, T max 0.865, 0.956
No. of measured, independent and observed [I > 2(I)] reflections 17036, 8546, 8434
R int 0.014
(sin /)max (1) 0.696
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.018, 0.049, 1.03
No. of reflections 8546
No. of parameters 322
H-atom treatment H-atom parameters constrained
max, min (e 3) 0.48, 0.60

Computer programs: PAL ADSC Quantum-210 ADX (Arvai Nielsen, 1983), HKL3000sm (Otwinowski Minor, 1997), SHELXT2014 and SHELXL2014 (Sheldrick, 2008), DIAMOND (Brandenburg, 2007), WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989014027479/sj5433sup1.cif

e-71-00100-sup1.cif (858.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014027479/sj5433Isup2.hkl

e-71-00100-Isup2.hkl (468.1KB, hkl)

CCDC reference: 1039747

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The X-ray crystallography experiment at PLS-II 2D-SMC beamline was supported in part by MISP and POSTECH.

supplementary crystallographic information

Crystal data

[Cr(NCS)2(C2H8N2)2]2[ZnCl4] Z = 2
Mr = 783.90 F(000) = 796
Triclinic, P1 Dx = 1.683 Mg m3
a = 7.6870 (15) Å Synchrotron radiation, λ = 0.62998 Å
b = 13.853 (3) Å Cell parameters from 94806 reflections
c = 14.560 (3) Å θ = 0.4–33.6°
α = 92.74 (3)° µ = 1.50 mm1
β = 92.76 (3)° T = 100 K
γ = 90.21 (3)° Needle, red
V = 1546.9 (5) Å3 0.10 × 0.03 × 0.03 mm

Data collection

ADSC Q210 CCD area-detector diffractometer 8434 reflections with I > 2σ(I)
Radiation source: PLSII 2D bending magnet Rint = 0.014
ω scans θmax = 26.0°, θmin = 2.4°
Absorption correction: empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski & Minor, 1997) h = −10→10
Tmin = 0.865, Tmax = 0.956 k = −19→19
17036 measured reflections l = −20→20
8546 independent reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.018 H-atom parameters constrained
wR(F2) = 0.049 w = 1/[σ2(Fo2) + (0.027P)2 + 0.6367P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
8546 reflections Δρmax = 0.48 e Å3
322 parameters Δρmin = −0.60 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cr1A 1.0000 0.0000 0.5000 0.00585 (4)
S1A 1.34965 (3) 0.21259 (2) 0.69613 (2) 0.01282 (5)
N1A 0.83989 (11) 0.00710 (6) 0.61105 (6) 0.01133 (14)
H1A1 0.7841 −0.0505 0.6151 0.014*
H1A2 0.9052 0.0192 0.6642 0.014*
N2A 0.86680 (11) 0.12458 (6) 0.46494 (6) 0.01130 (14)
H2A1 0.9409 0.1676 0.4417 0.014*
H2A2 0.7803 0.1099 0.4216 0.014*
N3A 1.17486 (11) 0.08052 (6) 0.57360 (6) 0.01110 (14)
C1A 0.70956 (13) 0.08539 (8) 0.59868 (7) 0.01647 (18)
H1A3 0.6706 0.1094 0.6594 0.020*
H1A4 0.6066 0.0600 0.5616 0.020*
C2A 0.79203 (13) 0.16675 (7) 0.55045 (7) 0.01477 (18)
H2A3 0.7036 0.2159 0.5349 0.018*
H2A4 0.8849 0.1982 0.5909 0.018*
C3A 1.24862 (12) 0.13654 (6) 0.62427 (6) 0.00895 (15)
Cr2B 0.5000 0.5000 0.5000 0.00494 (4)
S1B 0.15226 (4) 0.64435 (2) 0.26918 (2) 0.01492 (5)
N1B 0.33365 (10) 0.38801 (6) 0.52696 (5) 0.00894 (13)
H1B1 0.2819 0.3630 0.4735 0.011*
H1B2 0.3944 0.3402 0.5545 0.011*
N2B 0.38490 (10) 0.56908 (6) 0.61174 (5) 0.00906 (13)
H2B1 0.4679 0.5980 0.6505 0.011*
H2B2 0.3100 0.6152 0.5919 0.011*
N3B 0.32168 (11) 0.55205 (6) 0.41316 (6) 0.01046 (14)
C1B 0.19944 (12) 0.42703 (7) 0.58878 (7) 0.01159 (16)
H1B3 0.1421 0.3736 0.6188 0.014*
H1B4 0.1094 0.4622 0.5529 0.014*
C2B 0.28916 (13) 0.49470 (7) 0.66051 (6) 0.01178 (16)
H2B3 0.2022 0.5261 0.6999 0.014*
H2B4 0.3714 0.4584 0.7001 0.014*
C3B 0.24999 (11) 0.58858 (6) 0.35161 (6) 0.00807 (15)
Cr3C 0.0000 0.5000 0.0000 0.00436 (4)
S1C 0.47203 (3) 0.29853 (2) −0.07639 (2) 0.01296 (5)
N1C 0.00397 (10) 0.44890 (5) 0.13158 (5) 0.00792 (13)
H1C1 0.1118 0.4263 0.1474 0.010*
H1C2 −0.0225 0.4973 0.1729 0.010*
N2C −0.12263 (11) 0.36953 (6) −0.03474 (5) 0.00961 (14)
H2C1 −0.2372 0.3795 −0.0499 0.012*
H2C2 −0.0729 0.3404 −0.0842 0.012*
N3C 0.22291 (11) 0.43406 (6) −0.02527 (6) 0.01166 (14)
C1C −0.12726 (13) 0.36960 (7) 0.13185 (6) 0.01083 (16)
H1C3 −0.2464 0.3965 0.1322 0.013*
H1C4 −0.1076 0.3314 0.1871 0.013*
C2C −0.10560 (14) 0.30666 (7) 0.04542 (6) 0.01285 (17)
H2C3 0.0102 0.2756 0.0476 0.015*
H2C4 −0.1961 0.2554 0.0399 0.015*
C3C 0.32768 (12) 0.37725 (7) −0.04576 (6) 0.00935 (15)
Cr4D 0.5000 0.0000 0.0000 0.00523 (4)
S1D 0.95604 (3) 0.14416 (2) −0.15730 (2) 0.01195 (5)
N1D 0.46882 (10) 0.12154 (5) 0.08662 (5) 0.00860 (13)
H1D1 0.4761 0.1760 0.0545 0.010*
H1D2 0.3627 0.1200 0.1116 0.010*
N2D 0.65239 (10) −0.04648 (6) 0.11111 (6) 0.01038 (14)
H2D1 0.6223 −0.1080 0.1232 0.012*
H2D2 0.7668 −0.0458 0.0976 0.012*
N3D 0.70324 (10) 0.06281 (6) −0.05272 (6) 0.01025 (14)
C1D 0.60962 (13) 0.12127 (7) 0.16052 (6) 0.01106 (16)
H1D3 0.5810 0.1665 0.2123 0.013*
H1D4 0.7213 0.1420 0.1364 0.013*
C2D 0.62447 (13) 0.01935 (7) 0.19298 (6) 0.01289 (17)
H2D3 0.7235 0.0150 0.2386 0.015*
H2D4 0.5166 0.0009 0.2225 0.015*
C3D 0.80965 (12) 0.09622 (6) −0.09656 (6) 0.00862 (15)
Zn1E 0.22955 (2) 0.24635 (2) 0.28844 (2) 0.00695 (3)
Cl1E 0.02321 (3) 0.32263 (2) 0.37380 (2) 0.01053 (4)
Cl2E 0.09386 (3) 0.12821 (2) 0.20032 (2) 0.01134 (4)
Cl3E 0.43186 (3) 0.18443 (2) 0.38989 (2) 0.01078 (4)
Cl4E 0.37370 (3) 0.34934 (2) 0.20252 (2) 0.01048 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cr1A 0.00661 (9) 0.00475 (8) 0.00601 (8) −0.00088 (6) −0.00137 (6) 0.00022 (6)
S1A 0.01664 (11) 0.00822 (9) 0.01275 (10) −0.00177 (8) −0.00551 (8) −0.00184 (7)
N1A 0.0113 (3) 0.0130 (4) 0.0098 (3) −0.0010 (3) 0.0011 (3) 0.0008 (3)
N2A 0.0132 (4) 0.0082 (3) 0.0123 (3) 0.0008 (3) −0.0029 (3) 0.0013 (3)
N3A 0.0104 (3) 0.0111 (3) 0.0116 (3) −0.0023 (3) −0.0021 (3) 0.0001 (3)
C1A 0.0114 (4) 0.0213 (5) 0.0167 (4) 0.0046 (4) 0.0025 (3) −0.0014 (4)
C2A 0.0159 (4) 0.0108 (4) 0.0168 (4) 0.0051 (3) −0.0028 (3) −0.0038 (3)
C3A 0.0089 (4) 0.0083 (4) 0.0098 (4) 0.0012 (3) 0.0002 (3) 0.0031 (3)
Cr2B 0.00588 (8) 0.00513 (8) 0.00366 (8) 0.00158 (6) −0.00107 (6) −0.00018 (6)
S1B 0.02450 (12) 0.01331 (10) 0.00660 (9) 0.00362 (9) −0.00526 (8) 0.00280 (8)
N1B 0.0101 (3) 0.0080 (3) 0.0085 (3) 0.0000 (3) 0.0000 (3) −0.0010 (3)
N2B 0.0108 (3) 0.0089 (3) 0.0073 (3) 0.0019 (3) 0.0004 (3) −0.0017 (2)
N3B 0.0097 (3) 0.0120 (3) 0.0096 (3) 0.0020 (3) −0.0020 (3) 0.0010 (3)
C1B 0.0096 (4) 0.0123 (4) 0.0131 (4) 0.0000 (3) 0.0029 (3) 0.0006 (3)
C2B 0.0149 (4) 0.0130 (4) 0.0078 (4) 0.0015 (3) 0.0036 (3) 0.0005 (3)
C3B 0.0088 (4) 0.0081 (3) 0.0072 (3) −0.0002 (3) 0.0009 (3) −0.0011 (3)
Cr3C 0.00541 (8) 0.00389 (8) 0.00375 (8) 0.00058 (6) −0.00073 (6) 0.00083 (6)
S1C 0.01002 (10) 0.01022 (10) 0.01841 (11) 0.00200 (7) 0.00200 (8) −0.00320 (8)
N1C 0.0104 (3) 0.0082 (3) 0.0051 (3) −0.0003 (3) −0.0013 (2) 0.0009 (2)
N2C 0.0148 (4) 0.0081 (3) 0.0059 (3) −0.0035 (3) −0.0017 (3) 0.0012 (2)
N3C 0.0102 (3) 0.0136 (4) 0.0116 (3) 0.0033 (3) 0.0015 (3) 0.0032 (3)
C1C 0.0145 (4) 0.0110 (4) 0.0071 (4) −0.0040 (3) 0.0001 (3) 0.0028 (3)
C2C 0.0226 (5) 0.0071 (4) 0.0088 (4) −0.0038 (3) −0.0014 (3) 0.0024 (3)
C3C 0.0092 (4) 0.0105 (4) 0.0085 (4) −0.0013 (3) −0.0004 (3) 0.0023 (3)
Cr4D 0.00413 (8) 0.00421 (8) 0.00761 (8) 0.00135 (6) 0.00197 (6) 0.00099 (6)
S1D 0.01028 (10) 0.00953 (10) 0.01695 (11) 0.00014 (7) 0.00598 (8) 0.00466 (8)
N1D 0.0086 (3) 0.0064 (3) 0.0109 (3) 0.0017 (2) 0.0022 (3) 0.0002 (3)
N2D 0.0099 (3) 0.0084 (3) 0.0129 (3) 0.0023 (3) −0.0004 (3) 0.0025 (3)
N3D 0.0084 (3) 0.0091 (3) 0.0134 (3) −0.0004 (3) 0.0031 (3) −0.0002 (3)
C1D 0.0138 (4) 0.0092 (4) 0.0101 (4) −0.0006 (3) −0.0003 (3) 0.0002 (3)
C2D 0.0175 (4) 0.0120 (4) 0.0094 (4) 0.0001 (3) 0.0001 (3) 0.0029 (3)
C3D 0.0081 (4) 0.0063 (3) 0.0114 (4) 0.0018 (3) −0.0001 (3) −0.0002 (3)
Zn1E 0.00724 (5) 0.00672 (5) 0.00674 (5) 0.00094 (3) −0.00074 (3) −0.00012 (3)
Cl1E 0.00871 (9) 0.01205 (9) 0.01064 (9) 0.00290 (7) 0.00053 (7) −0.00174 (7)
Cl2E 0.01069 (9) 0.00975 (9) 0.01296 (9) −0.00072 (7) −0.00204 (7) −0.00320 (7)
Cl3E 0.00939 (9) 0.01256 (9) 0.01027 (9) 0.00166 (7) −0.00291 (7) 0.00272 (7)
Cl4E 0.01084 (9) 0.01095 (9) 0.00978 (9) −0.00068 (7) −0.00084 (7) 0.00329 (7)

Geometric parameters (Å, º)

Cr1A—N3Ai 1.9838 (11) Cr3C—N2C 2.0653 (10)
Cr1A—N3A 1.9838 (11) Cr3C—N2Ciii 2.0653 (10)
Cr1A—N1Ai 2.0775 (10) Cr3C—N1Ciii 2.0727 (9)
Cr1A—N1A 2.0776 (10) Cr3C—N1C 2.0727 (9)
Cr1A—N2A 2.0818 (10) S1C—C3C 1.6215 (11)
Cr1A—N2Ai 2.0818 (10) N1C—C1C 1.4891 (12)
S1A—C3A 1.6181 (11) N1C—H1C1 0.9100
N1A—C1A 1.4905 (14) N1C—H1C2 0.9100
N1A—H1A1 0.9100 N2C—C2C 1.4903 (12)
N1A—H1A2 0.9100 N2C—H2C1 0.9100
N2A—C2A 1.4912 (13) N2C—H2C2 0.9100
N2A—H2A1 0.9100 N3C—C3C 1.1672 (13)
N2A—H2A2 0.9100 C1C—C2C 1.5125 (14)
N3A—C3A 1.1704 (13) C1C—H1C3 0.9900
C1A—C2A 1.5094 (16) C1C—H1C4 0.9900
C1A—H1A3 0.9900 C2C—H2C3 0.9900
C1A—H1A4 0.9900 C2C—H2C4 0.9900
C2A—H2A3 0.9900 Cr4D—N3Div 1.9890 (10)
C2A—H2A4 0.9900 Cr4D—N3D 1.9890 (10)
Cr2B—N3B 1.9811 (10) Cr4D—N1Div 2.0765 (10)
Cr2B—N3Bii 1.9811 (10) Cr4D—N1D 2.0766 (10)
Cr2B—N1Bii 2.0707 (10) Cr4D—N2D 2.0799 (10)
Cr2B—N1B 2.0708 (10) Cr4D—N2Div 2.0799 (10)
Cr2B—N2B 2.0837 (10) S1D—C3D 1.6237 (11)
Cr2B—N2Bii 2.0837 (10) N1D—C1D 1.4891 (13)
S1B—C3B 1.6148 (10) N1D—H1D1 0.9100
N1B—C1B 1.4879 (13) N1D—H1D2 0.9100
N1B—H1B1 0.9100 N2D—C2D 1.4903 (13)
N1B—H1B2 0.9100 N2D—H2D1 0.9100
N2B—C2B 1.4907 (13) N2D—H2D2 0.9100
N2B—H2B1 0.9100 N3D—C3D 1.1690 (13)
N2B—H2B2 0.9100 C1D—C2D 1.5131 (13)
N3B—C3B 1.1665 (13) C1D—H1D3 0.9900
C1B—C2B 1.5092 (14) C1D—H1D4 0.9900
C1B—H1B3 0.9900 C2D—H2D3 0.9900
C1B—H1B4 0.9900 C2D—H2D4 0.9900
C2B—H2B3 0.9900 Zn1E—Cl2E 2.2518 (8)
C2B—H2B4 0.9900 Zn1E—Cl4E 2.2630 (7)
Cr3C—N3C 1.9864 (10) Zn1E—Cl3E 2.2903 (8)
Cr3C—N3Ciii 1.9864 (10) Zn1E—Cl1E 2.2923 (8)
N3Ai—Cr1A—N3A 180.0 N3C—Cr3C—N2Ciii 92.81 (4)
N3Ai—Cr1A—N1Ai 89.16 (4) N3Ciii—Cr3C—N2Ciii 87.19 (4)
N3A—Cr1A—N1Ai 90.84 (4) N2C—Cr3C—N2Ciii 180.0
N3Ai—Cr1A—N1A 90.84 (4) N3C—Cr3C—N1Ciii 88.78 (4)
N3A—Cr1A—N1A 89.16 (4) N3Ciii—Cr3C—N1Ciii 91.22 (4)
N1Ai—Cr1A—N1A 180.0 N2C—Cr3C—N1Ciii 96.91 (4)
N3Ai—Cr1A—N2A 90.31 (4) N2Ciii—Cr3C—N1Ciii 83.09 (4)
N3A—Cr1A—N2A 89.69 (4) N3C—Cr3C—N1C 91.22 (4)
N1Ai—Cr1A—N2A 97.06 (4) N3Ciii—Cr3C—N1C 88.78 (4)
N1A—Cr1A—N2A 82.94 (4) N2C—Cr3C—N1C 83.09 (4)
N3Ai—Cr1A—N2Ai 89.69 (4) N2Ciii—Cr3C—N1C 96.91 (4)
N3A—Cr1A—N2Ai 90.31 (4) N1Ciii—Cr3C—N1C 180.0
N1Ai—Cr1A—N2Ai 82.94 (4) C1C—N1C—Cr3C 107.84 (6)
N1A—Cr1A—N2Ai 97.06 (4) C1C—N1C—H1C1 110.1
N2A—Cr1A—N2Ai 180.0 Cr3C—N1C—H1C1 110.1
C1A—N1A—Cr1A 109.59 (6) C1C—N1C—H1C2 110.1
C1A—N1A—H1A1 109.8 Cr3C—N1C—H1C2 110.1
Cr1A—N1A—H1A1 109.8 H1C1—N1C—H1C2 108.5
C1A—N1A—H1A2 109.8 C2C—N2C—Cr3C 108.84 (6)
Cr1A—N1A—H1A2 109.8 C2C—N2C—H2C1 109.9
H1A1—N1A—H1A2 108.2 Cr3C—N2C—H2C1 109.9
C2A—N2A—Cr1A 107.35 (6) C2C—N2C—H2C2 109.9
C2A—N2A—H2A1 110.2 Cr3C—N2C—H2C2 109.9
Cr1A—N2A—H2A1 110.2 H2C1—N2C—H2C2 108.3
C2A—N2A—H2A2 110.2 C3C—N3C—Cr3C 163.96 (8)
Cr1A—N2A—H2A2 110.2 N1C—C1C—C2C 106.92 (8)
H2A1—N2A—H2A2 108.5 N1C—C1C—H1C3 110.3
C3A—N3A—Cr1A 166.35 (8) C2C—C1C—H1C3 110.3
N1A—C1A—C2A 109.01 (8) N1C—C1C—H1C4 110.3
N1A—C1A—H1A3 109.9 C2C—C1C—H1C4 110.3
C2A—C1A—H1A3 109.9 H1C3—C1C—H1C4 108.6
N1A—C1A—H1A4 109.9 N2C—C2C—C1C 107.87 (7)
C2A—C1A—H1A4 109.9 N2C—C2C—H2C3 110.1
H1A3—C1A—H1A4 108.3 C1C—C2C—H2C3 110.1
N2A—C2A—C1A 107.69 (8) N2C—C2C—H2C4 110.1
N2A—C2A—H2A3 110.2 C1C—C2C—H2C4 110.1
C1A—C2A—H2A3 110.2 H2C3—C2C—H2C4 108.4
N2A—C2A—H2A4 110.2 N3C—C3C—S1C 178.85 (9)
C1A—C2A—H2A4 110.2 N3Div—Cr4D—N3D 180.0
H2A3—C2A—H2A4 108.5 N3Div—Cr4D—N1Div 89.74 (4)
N3A—C3A—S1A 178.78 (9) N3D—Cr4D—N1Div 90.26 (4)
N3B—Cr2B—N3Bii 180.0 N3Div—Cr4D—N1D 90.26 (4)
N3B—Cr2B—N1Bii 89.64 (4) N3D—Cr4D—N1D 89.74 (4)
N3Bii—Cr2B—N1Bii 90.36 (4) N1Div—Cr4D—N1D 180.00 (3)
N3B—Cr2B—N1B 90.36 (4) N3Div—Cr4D—N2D 88.05 (4)
N3Bii—Cr2B—N1B 89.64 (4) N3D—Cr4D—N2D 91.95 (4)
N1Bii—Cr2B—N1B 180.0 N1Div—Cr4D—N2D 96.97 (4)
N3B—Cr2B—N2B 91.27 (4) N1D—Cr4D—N2D 83.03 (4)
N3Bii—Cr2B—N2B 88.73 (4) N3Div—Cr4D—N2Div 91.95 (4)
N1Bii—Cr2B—N2B 96.72 (4) N3D—Cr4D—N2Div 88.05 (4)
N1B—Cr2B—N2B 83.28 (4) N1Div—Cr4D—N2Div 83.03 (4)
N3B—Cr2B—N2Bii 88.73 (4) N1D—Cr4D—N2Div 96.97 (4)
N3Bii—Cr2B—N2Bii 91.27 (4) N2D—Cr4D—N2Div 180.0
N1Bii—Cr2B—N2Bii 83.28 (4) C1D—N1D—Cr4D 107.80 (6)
N1B—Cr2B—N2Bii 96.72 (4) C1D—N1D—H1D1 110.1
N2B—Cr2B—N2Bii 180.0 Cr4D—N1D—H1D1 110.1
C1B—N1B—Cr2B 108.20 (6) C1D—N1D—H1D2 110.1
C1B—N1B—H1B1 110.1 Cr4D—N1D—H1D2 110.1
Cr2B—N1B—H1B1 110.1 H1D1—N1D—H1D2 108.5
C1B—N1B—H1B2 110.1 C2D—N2D—Cr4D 108.84 (6)
Cr2B—N1B—H1B2 110.1 C2D—N2D—H2D1 109.9
H1B1—N1B—H1B2 108.4 Cr4D—N2D—H2D1 109.9
C2B—N2B—Cr2B 107.91 (6) C2D—N2D—H2D2 109.9
C2B—N2B—H2B1 110.1 Cr4D—N2D—H2D2 109.9
Cr2B—N2B—H2B1 110.1 H2D1—N2D—H2D2 108.3
C2B—N2B—H2B2 110.1 C3D—N3D—Cr4D 169.62 (8)
Cr2B—N2B—H2B2 110.1 N1D—C1D—C2D 107.70 (8)
H2B1—N2B—H2B2 108.4 N1D—C1D—H1D3 110.2
C3B—N3B—Cr2B 164.42 (8) C2D—C1D—H1D3 110.2
N1B—C1B—C2B 107.95 (8) N1D—C1D—H1D4 110.2
N1B—C1B—H1B3 110.1 C2D—C1D—H1D4 110.2
C2B—C1B—H1B3 110.1 H1D3—C1D—H1D4 108.5
N1B—C1B—H1B4 110.1 N2D—C2D—C1D 107.87 (8)
C2B—C1B—H1B4 110.1 N2D—C2D—H2D3 110.1
H1B3—C1B—H1B4 108.4 C1D—C2D—H2D3 110.1
N2B—C2B—C1B 107.96 (7) N2D—C2D—H2D4 110.1
N2B—C2B—H2B3 110.1 C1D—C2D—H2D4 110.1
C1B—C2B—H2B3 110.1 H2D3—C2D—H2D4 108.4
N2B—C2B—H2B4 110.1 N3D—C3D—S1D 179.15 (9)
C1B—C2B—H2B4 110.1 Cl2E—Zn1E—Cl4E 111.63 (2)
H2B3—C2B—H2B4 108.4 Cl2E—Zn1E—Cl3E 111.31 (2)
N3B—C3B—S1B 177.11 (8) Cl4E—Zn1E—Cl3E 106.71 (2)
N3C—Cr3C—N3Ciii 180.0 Cl2E—Zn1E—Cl1E 107.46 (2)
N3C—Cr3C—N2C 87.19 (4) Cl4E—Zn1E—Cl1E 112.49 (2)
N3Ciii—Cr3C—N2C 92.81 (4) Cl3E—Zn1E—Cl1E 107.20 (2)
Cr1A—N1A—C1A—C2A −33.94 (9) Cr3C—N1C—C1C—C2C 44.29 (8)
Cr1A—N2A—C2A—C1A −45.42 (9) Cr3C—N2C—C2C—C1C 39.21 (9)
N1A—C1A—C2A—N2A 52.98 (10) N1C—C1C—C2C—N2C −55.56 (10)
Cr2B—N1B—C1B—C2B −41.73 (8) Cr4D—N1D—C1D—C2D −43.80 (8)
Cr2B—N2B—C2B—C1B −40.80 (8) Cr4D—N2D—C2D—C1D −38.66 (9)
N1B—C1B—C2B—N2B 55.28 (10) N1D—C1D—C2D—N2D 55.05 (10)

Symmetry codes: (i) −x+2, −y, −z+1; (ii) −x+1, −y+1, −z+1; (iii) −x, −y+1, −z; (iv) −x+1, −y, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1A—H1A1···Cl3Ev 0.91 2.48 3.3700 (13) 165
N2A—H2A1···Cl1Evi 0.91 2.50 3.3483 (13) 155
N2A—H2A2···Cl3E 0.91 2.90 3.5797 (12) 133
C1A—H1A3···S1Avii 0.99 2.91 3.5983 (15) 127
C2A—H2A3···Cl3E 0.99 2.91 3.5533 (15) 123
C2A—H2A4···S1Bii 0.99 2.94 3.6270 (15) 128
N1B—H1B1···Cl1E 0.91 2.45 3.2813 (13) 152
N1B—H1B2···S1Avii 0.91 2.81 3.5401 (13) 138
N2B—H2B1···Cl4Eii 0.91 2.49 3.3532 (13) 159
N2B—H2B2···Cl1Eviii 0.91 2.77 3.4934 (12) 138
C1B—H1B3···S1Avii 0.99 2.98 3.5910 (14) 121
C1B—H1B3···S1Bviii 0.99 2.87 3.6440 (14) 136
C2B—H2B3···Cl1Eviii 0.99 2.93 3.5309 (14) 120
N1C—H1C1···Cl4E 0.91 2.40 3.3058 (12) 171
N1C—H1C2···S1B 0.91 2.73 3.4473 (14) 137
N2C—H2C1···S1Cvii 0.91 2.50 3.2836 (12) 144
N2C—H2C2···S1Biii 0.91 2.75 3.4063 (11) 130
N2C—H2C2···S1Dvii 0.91 2.88 3.5893 (13) 135
C1C—H1C4···Cl1E 0.99 2.86 3.7421 (13) 149
N1D—H1D1···S1C 0.91 2.61 3.4937 (13) 164
N1D—H1D2···Cl2E 0.91 2.49 3.3919 (12) 172
N2D—H2D1···S1Civ 0.91 2.78 3.6225 (12) 155
N2D—H2D2···S1Dix 0.91 2.67 3.3564 (12) 133
C1D—H1D3···Cl3E 0.99 2.88 3.7357 (14) 145
C1D—H1D4···Cl2Evi 0.99 2.98 3.7397 (12) 135

Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) −x, −y+1, −z; (iv) −x+1, −y, −z; (v) −x+1, −y, −z+1; (vi) x+1, y, z; (vii) x−1, y, z; (viii) −x, −y+1, −z+1; (ix) −x+2, −y, −z.

References

  1. Arvai, A. J. & Nielsen, C. (1983). ADSC Quantum-210 ADX. Area Detector System Corporation, Poway, CA, USA.
  2. Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  3. Brencic, J. V. & Leban, I. (1981). Z. Anorg. Allg. Chem. 480, 213–219.
  4. Brenčič, J. V., Leban, I. & Polanc, I. (1987). Acta Cryst. C43, 885–887.
  5. Choi, J.-H. (2000a). Chem. Phys. 256, 29–35.
  6. Choi, J.-H. (2000b). Spectrochim. Acta Part A, 58, 1599–1606. [DOI] [PubMed]
  7. Choi, J.-H., Hong, Y. P. & Park, Y. C. (2002). Spectrochim. Acta Part A, 56, 1653–1660.
  8. Choi, J.-H., Clegg, W., Harrington, R. W. & Lee, S. H. (2010). J. Chem. Crystallogr. 40, 567–571.
  9. Choi, J.-H., Joshi, T. & Spiccia, L. (2011). Z. Anorg. Allg. Chem. 637, 1194–1198.
  10. Choi, J.-H. & Lee, S. H. (2009). J. Mol. Struct. 932, 84–89.
  11. Choi, J.-H. & Moon, D. (2014). J. Mol. Struct. 1059, 325–331.
  12. Choi, J.-H., Oh, I.-G., Linder, R. & Schönherr, T. (2004a). Chem. Phys. 297, 7–12.
  13. Choi, J.-H., Oh, I. G., Suzuki, T. & Kaizaki, S. (2004b). J. Mol. Struct 694, 39–44.
  14. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  15. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  16. Moon, D., Choi, J.-H., Ryoo, K. S. & Hong, Y. P. (2013). Acta Cryst. E69, m376–m377. [DOI] [PMC free article] [PubMed]
  17. Ooi, S., Komiyama, Y. & Kuroya, H. (1960). Bull. Chem. Soc. Jpn, 33, 354–357.
  18. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  19. Sandrini, D., Gandolfi, M. T., Moggi, L. & Balzani, V. (1978). J. Am. Chem. Soc. 100, 1463–1468.
  20. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  21. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989014027479/sj5433sup1.cif

e-71-00100-sup1.cif (858.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014027479/sj5433Isup2.hkl

e-71-00100-Isup2.hkl (468.1KB, hkl)

CCDC reference: 1039747

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES