Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 1;71(Pt 1):62–64. doi: 10.1107/S2056989014026425

Crystal structure of N-[(2S,5R)-4-oxo-2,3-diphenyl-1,3-thia­zinan-5-yl]acetamide 0.375-hydrate

Hemant P Yennawar a, Harnoor Singh b, Lee J Silverberg b,*
PMCID: PMC4331885  PMID: 25705452

The crystal structure of the title compound displays boat and half-chair configurations of the thia­zine ring.

Keywords: crystal structure; thia­zine ring; boat; half-chair; 1,3-thia­zin-4-one; hydrogen bonding

Abstract

The asymmetric unit of the title compound, C18H18N2O2S.0.375H2O, has two independent organic mol­ecules (A and B) and 3/4 of a water mol­ecule distributed over three sites. In mol­ecule A, the 1,3-thia­zine ring is in a boat conformation, with the C atoms at the 2- and 5-positions out of the plane. The angle between the two phenyl rings is 51.70 (12)°. In mol­ecule B, the thia­zine ring is in a half-chair conformation, with the S atom forming the back of the half-chair. The angle between the two phenyl rings is 84.44 (14)°. The A mol­ecule features an intra­molecular N—H⋯O hydrogen bond, which closes an S(5) ring motif. In the crystal, the corresponding N—H grouping of the B mol­ecule participates in an inter­molecular hydrogen bond to the A mol­ecule. The A mol­ecule participates in a C—H⋯O inter­action back to the B mol­ecule, whilst the B mol­ecule features an intra­molecular C—H⋯O link, which generates an S(10) loop.

Chemical context  

In a recent paper, we reported the 2,4,6-tripropyl-1,3,5,2,4,6-trioxatri­phospho­rinane-2,4,6-trioxide (T3P)-promoted cyclization of N-[phenyl­methyl­idene]aniline with 3-sulfanyl­propanoic acid to produce 2,3-diphenyl-2,3,5,6-tetra­hydro-4H-1,3-thia­zin-4-one (Yennawar & Silverberg, 2014). As noted before (Yennawar et al., 2014), prior to this, the N-aryl compounds had not easily been prepared by condensation of imines with thio­acids. With respect to the thio­acid, the use of a homochiral cysteine derivative is desirable because, along with putting a functional group on the ring, it creates a second chiral center at the 5-position of the thia­zinone, potentially allowing the separation of two diastereomers into cis and trans homochiral heterocycles. A condensation of N-acetyl­cysteine with two very active (CX 3)2C=NH imines has been reported (Raasch, 1974), giving a thia­zinone with one chiral center. Although a search of 2,3,5,6-tetra­hydro-4H-1,3-thia­zin-4-ones with a nitro­gen atom at the 5-position and carbon atoms at positions 2 and 3 found 156 compounds, there were only two compounds with an aryl group at the 3-position and both involved a more complex bridged structure synthesized by a cyclo­addition route (Potts, et al., 1974). Herein we report the T3P-promoted cyclization of N-[phenyl­methyl­idene]aniline with N-acetyl-l-cysteine. One major product arose along with at least three minor products, as determined by NMR spectroscopy. The major product was isolated by column chromatography followed by recrystallization. The structure is reported as the title compound here. The minor products have not yet been satisfactorily isolated. As reported here, the major product is the cis diastereomer.graphic file with name e-71-00062-scheme1.jpg

Structural commentary  

The two independent organic mol­ecules in the asymmetric unit exhibit different geometries for the thia­zine ring (Fig. 1). In mol­ecule A, the ring takes a boat configuration with the groups at the 2- and 5-positions pseudo-equatorial and the hydrogens at these positions within 1.993 Å of each other. The stability gained by having both groups pseudo-equatorial must offset the higher energy expected in a boat conformation. The dihedral angle between the C1- and C8-benzene rings is 51.7 (2)°. An intra­molecular N2—H2N⋯O1 hydrogen bond is observed, which closes an S(5) ring.

Figure 1.

Figure 1

ORTEP view of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

In mol­ecule B, the thia­zine ring adopts a half-chair conformation. The groups at the 2- and 5-positions cannot readily be defined as pseudo-axial or pseudo-equatorial, but the phenyl ring at the 2-position is closer to axial, while the amide group at the 5-position is closer to equatorial. The dihedral angle between the phenyl rings (C20–C25 and C26–C31) is 84.4 (2)°. This conformation is similar to that observed for 2,3-diphenyl-2,3,5,6-tetra­hydro-4H-1,3-thia­zin-4-one (Yennawar & Silverberg, 2014). Mol­ecule B features an intra­molecular C21—H21⋯O4 link, which generates an S(10) loop.

The residual electron density suggested several solvent mol­ecule sites but only with partial occupancies. The best model fixed the occupancy for each of the three water-mol­ecule sites at 0.25.

Supra­molecular features  

In the crystal, the N—H grouping of mol­ecule B (corres­ponding to the one involved in the intra­molecular N2—H2N⋯O1 hydrogen bond in mol­ecule A) participates in an inter­molecular N4—H4N⋯O2 hydrogen bond to mol­ecule A (Table 1). Mol­ecule A participates in a C7—H7⋯O3 inter­action back to mol­ecule B. The crystal packing is shown in Fig. 2.

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N2H2NO1 0.88(6) 2.22(5) 2.678(4) 113(5)
N4H4NO2 0.90(4) 2.03(4) 2.899(5) 162(4)
C7H7O3 0.98 2.50 3.241(4) 132
C21H21O4 0.93 2.48 3.375(5) 162

Figure 2.

Figure 2

The crystal packing of the title compound.

Synthesis and crystallization  

A two-necked 25 ml round-bottom flask was oven-dried, cooled under N2, and charged with a stir bar and N-benzyl­ideneaniline (1.087 g, 6 mmol). Tetra­hydro­furan (2.3 ml) was added, the solid dissolved, and the solution was stirred. Pyridine (1.95 ml, 24 mmol) was added and then N-acetyl-l-cysteine (6 mmol, 0.9824 g) was added. Finally, 2,4,6-tripropyl-1,3,5,2,4,6-trioxatri­phospho­rinane-2,4,6-trioxide (T3P) in 2-methyl­tetra­hydro­furan (50 weight%; 7.1 ml, 12 mmol) was added. The reaction was stirred at room temperature. TLC (EtOAc) after one day showed the reaction was complete, with two product spots, but the reaction was allowed to stir another 13 days. The mixture was poured into a separatory funnel with di­chloro­methane and distilled water. The layers were separated and the aqueous was then extracted twice with di­chloro­methane. The organics were combined and washed with saturated sodium bicarbonate and then saturated sodium chloride. The organic was dried over sodium sulfate, and concentrated under vacuum to a solid. The crude was chromatographed on 30 g flash silica gel, eluting with 50% ethyl acetate/hexa­nes and 100% ethyl acetate. Fractions containing the larger, more polar spot on TLC were combined, concentrated under vacuum, recrystallized from ethyl acetate/hexa­nes, and rinsed with ethanol to give light-yellow crystals of N-[(2S, 5R)-4-oxo-2,3-diphenyl-1,3-thia­zinan-5-yl]acetamide (0.2702 g, 13.8%). m.p.: 460–463 K. R f = 0.24 (EtOAc). Colourless cuboids were grown by slow evaporation from 2-propanol. The fractions containing the other TLC spot [R f = 0.33 (EtOAc)] showed four different compounds by NMR, including the title compound.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The hydrogen atoms bound to the nitro­gen atom was located in the difference Fourier map and refined isotropically. The C-bound H atoms were geometrically placed with C—H = 0.93–0.97 Å, and refined as riding with U iso(H) = 1.2Ueq(C). The three solvent mol­ecule sites were given occupancy of 0.25 each, as that proved to be the best way to account for the residual electron density.

Table 2. Experimental details.

Crystal data
Chemical formula 2C18H18N2O2S0.75OH2O
M r 664.81
Crystal system, space group Tetragonal, P41212
Temperature (K) 298
a, c () 13.3438(12), 40.237(7)
V (3) 7164.6(16)
Z 8
Radiation type Mo K
(mm1) 0.19
Crystal size (mm) 0.28 0.25 0.20
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2001)
T min, T max 0.948, 0.962
No. of measured, independent and observed [I > 2(I)] reflections 56028, 8891, 6254
R int 0.049
(sin /)max (1) 0.667
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.066, 0.216, 1.05
No. of reflections 8891
No. of parameters 448
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
max, min (e 3) 0.75, 0.48
Absolute structure Flack (1983), 3769 Friedel pairs
Absolute structure parameter 0.1(1)

Computer programs: SMART and SAINT (Bruker, 2001), SHELXS97 and SHELXL97 (Sheldrick, 2008), XSHELL (Bruker, 2001) and ORTEP-3 for Windows (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989014026425/hb7315sup1.cif

e-71-00062-sup1.cif (28.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014026425/hb7315Isup2.hkl

e-71-00062-Isup2.hkl (435KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014026425/hb7315Isup3.mol

Supporting information file. DOI: 10.1107/S2056989014026425/hb7315Isup4.cml

CCDC reference: 1037009

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We acknowledge NSF funding (CHEM-0131112) for the X-ray diffractometer. We also express gratitude to Euticals for the gift of T3P in 2-methyl­tetra­hydro­furan, and to Oakwood Products for the gift of N-acetyl-l-cysteine.

supplementary crystallographic information

Crystal data

2C18H18N2O2S·0.75OH2O Dx = 1.233 Mg m3
Mr = 664.81 Melting point: 451(2) K
Tetragonal, P41212 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 4abw 2nw Cell parameters from 6252 reflections
a = 13.3438 (12) Å θ = 2.2–26.4°
c = 40.237 (7) Å µ = 0.19 mm1
V = 7164.6 (16) Å3 T = 298 K
Z = 8 Cube, colorless
F(000) = 2800 0.28 × 0.25 × 0.20 mm

Data collection

Bruker SMART APEX CCD diffractometer 8891 independent reflections
Radiation source: fine-focus sealed tube 6254 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.049
Detector resolution: 8.34 pixels mm-1 θmax = 28.3°, θmin = 1.6°
φ and ω scans h = −16→17
Absorption correction: multi-scan (SADABS; Bruker, 2001) k = −17→16
Tmin = 0.948, Tmax = 0.962 l = −53→53
56028 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.216 w = 1/[σ2(Fo2) + (0.140P)2] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.008
8891 reflections Δρmax = 0.75 e Å3
448 parameters Δρmin = −0.48 e Å3
0 restraints Absolute structure: Flack (1983), 3769 Friedel pairs
Primary atom site location: structure-invariant direct methods Absolute structure parameter: 0.10 (10)

Special details

Experimental. Absorption correction: SADABS was used for absorption correction. R(int) was 0.0331 before and 0.0128 after correction. The Ratio of minimum to maximum transmission is 0.8482. The λ/2 correction factor is 0.0015.The data collection nominally covered a full sphere of reciprocal space by a combination of 4 sets of ω scans each set at different φ and/or 2θ angles and each scan (10 s exposure) covering -0.300° degrees in ω. The crystal to detector distance was 5.82 cm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O5A 0.0057 (15) 0.053 (2) 0.2410 (7) 0.178 (10) 0.25
C1 0.2504 (3) −0.0827 (2) 0.18198 (8) 0.0489 (7)
C2 0.1531 (3) −0.1098 (3) 0.18700 (10) 0.0651 (9)
H2 0.1094 −0.0680 0.1985 0.078*
C3 0.1199 (4) −0.2031 (4) 0.17437 (13) 0.0878 (15)
H3 0.0530 −0.2212 0.1768 0.105*
C4 0.1842 (5) −0.2668 (3) 0.15865 (14) 0.0923 (16)
H4 0.1618 −0.3286 0.1510 0.111*
C5 0.2808 (4) −0.2392 (3) 0.15436 (11) 0.0800 (13)
H5 0.3247 −0.2825 0.1436 0.096*
C6 0.3156 (3) −0.1476 (3) 0.16574 (9) 0.0625 (9)
H6 0.3822 −0.1297 0.1625 0.075*
C7 0.3648 (3) 0.0213 (3) 0.21946 (8) 0.0509 (7)
H7 0.4174 0.0648 0.2105 0.061*
C8 0.4137 (3) −0.0748 (3) 0.22965 (8) 0.0562 (8)
C9 0.3653 (3) −0.1439 (3) 0.24980 (10) 0.0706 (10)
H9 0.3010 −0.1323 0.2579 0.085*
C10 0.4193 (5) −0.2344 (3) 0.25755 (12) 0.0907 (16)
H10 0.3891 −0.2829 0.2708 0.109*
C11 0.5109 (5) −0.2497 (4) 0.24620 (14) 0.0932 (16)
H11 0.5439 −0.3088 0.2517 0.112*
C12 0.5571 (4) −0.1833 (5) 0.22722 (15) 0.0994 (17)
H12 0.6211 −0.1966 0.2192 0.119*
C13 0.5102 (3) −0.0938 (4) 0.21928 (11) 0.0739 (10)
H13 0.5442 −0.0461 0.2068 0.089*
C14 0.2462 (2) 0.0994 (2) 0.18183 (8) 0.0499 (7)
C15 0.2878 (3) 0.1931 (2) 0.19744 (9) 0.0545 (7)
H15 0.3607 0.1932 0.1945 0.065*
C16 0.2647 (4) 0.1940 (3) 0.23457 (10) 0.0724 (10)
H16A 0.1927 0.1975 0.2377 0.087*
H16B 0.2940 0.2535 0.2444 0.087*
C17 0.2967 (3) 0.3685 (2) 0.17969 (9) 0.0577 (8)
C18 0.2486 (4) 0.4517 (3) 0.16103 (11) 0.0772 (12)
H18A 0.2521 0.5121 0.1739 0.116*
H18B 0.1798 0.4353 0.1568 0.116*
H18C 0.2830 0.4614 0.1403 0.116*
C19 0.6796 (2) 0.1320 (2) 0.09363 (8) 0.0481 (7)
H19 0.6662 0.1120 0.0706 0.058*
C20 0.7810 (2) 0.0882 (2) 0.10234 (9) 0.0516 (7)
C21 0.8070 (3) 0.0618 (3) 0.13434 (10) 0.0612 (8)
H21 0.7602 0.0671 0.1514 0.073*
C22 0.9023 (3) 0.0278 (3) 0.14103 (15) 0.0826 (13)
H22 0.9196 0.0100 0.1626 0.099*
C23 0.9725 (3) 0.0197 (4) 0.11586 (16) 0.0866 (15)
H23 1.0374 −0.0012 0.1207 0.104*
C24 0.9467 (3) 0.0419 (4) 0.08473 (16) 0.0900 (15)
H24 0.9933 0.0340 0.0677 0.108*
C25 0.8515 (3) 0.0765 (3) 0.07738 (12) 0.0693 (10)
H25 0.8347 0.0921 0.0555 0.083*
C26 0.5686 (2) −0.0093 (2) 0.10451 (8) 0.0492 (7)
C27 0.5836 (3) −0.0874 (3) 0.12672 (11) 0.0614 (8)
H27 0.6106 −0.0748 0.1476 0.074*
C28 0.5582 (3) −0.1838 (3) 0.11770 (13) 0.0726 (11)
H28 0.5669 −0.2361 0.1327 0.087*
C29 0.5199 (4) −0.2029 (3) 0.08654 (14) 0.0817 (13)
H29 0.5027 −0.2681 0.0806 0.098*
C30 0.5071 (4) −0.1261 (4) 0.06417 (13) 0.0899 (15)
H30 0.4823 −0.1396 0.0430 0.108*
C31 0.5311 (3) −0.0281 (3) 0.07304 (10) 0.0678 (10)
H31 0.5220 0.0240 0.0580 0.081*
C32 0.5461 (2) 0.1382 (2) 0.13924 (8) 0.0490 (7)
C33 0.5743 (3) 0.2454 (3) 0.14941 (9) 0.0542 (8)
H33 0.5249 0.2891 0.1387 0.065*
C34 0.6759 (3) 0.2826 (2) 0.13793 (10) 0.0570 (8)
H34A 0.7286 0.2442 0.1486 0.068*
H34B 0.6842 0.3525 0.1439 0.068*
C35 0.6035 (3) 0.1985 (4) 0.20735 (10) 0.0707 (10)
C36 0.5771 (5) 0.2170 (5) 0.24334 (11) 0.1019 (17)
H36A 0.5455 0.2813 0.2455 0.153*
H36B 0.6371 0.2157 0.2565 0.153*
H36C 0.5321 0.1657 0.2509 0.153*
N1 0.28612 (19) 0.01260 (19) 0.19383 (7) 0.0474 (6)
N2 0.2471 (3) 0.2807 (2) 0.18125 (9) 0.0601 (7)
H2N 0.193 (5) 0.265 (4) 0.1701 (12) 0.100 (17)*
N3 0.59653 (19) 0.09217 (19) 0.11341 (7) 0.0481 (6)
N4 0.5591 (3) 0.2575 (3) 0.18477 (9) 0.0633 (8)
H4N 0.511 (3) 0.305 (3) 0.1853 (9) 0.053 (10)*
O1 0.1807 (2) 0.10192 (19) 0.16054 (7) 0.0673 (7)
O2 0.3791 (2) 0.3763 (2) 0.19349 (8) 0.0734 (7)
O3 0.47621 (19) 0.09644 (19) 0.15238 (7) 0.0629 (6)
O4 0.6614 (3) 0.1312 (3) 0.19895 (8) 0.0841 (9)
S1 0.31262 (10) 0.08417 (8) 0.25589 (2) 0.0726 (3)
S2 0.68356 (7) 0.26844 (7) 0.09362 (3) 0.0624 (2)
O5C 0.9973 (9) 0.2040 (12) 0.2631 (3) 0.092 (4) 0.25
O5B 0.8745 (12) 0.1255 (12) 0.2500 0.270 (15) 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O5A 0.092 (12) 0.22 (3) 0.22 (3) 0.038 (16) 0.064 (14) 0.00 (2)
C1 0.0553 (18) 0.0383 (15) 0.0533 (15) −0.0032 (13) −0.0101 (14) 0.0055 (12)
C2 0.0536 (19) 0.064 (2) 0.078 (2) −0.0075 (16) −0.0073 (17) 0.0157 (18)
C3 0.079 (3) 0.070 (3) 0.114 (3) −0.028 (2) −0.036 (3) 0.023 (3)
C4 0.115 (4) 0.046 (2) 0.116 (4) −0.008 (3) −0.047 (3) 0.002 (2)
C5 0.103 (4) 0.054 (2) 0.083 (3) 0.014 (2) −0.024 (2) −0.013 (2)
C6 0.066 (2) 0.061 (2) 0.0607 (19) 0.0083 (17) −0.0060 (17) −0.0083 (16)
C7 0.0494 (17) 0.0505 (17) 0.0527 (16) −0.0001 (13) −0.0053 (13) 0.0027 (13)
C8 0.059 (2) 0.0545 (19) 0.0552 (16) −0.0001 (15) −0.0102 (15) −0.0019 (14)
C9 0.074 (3) 0.069 (2) 0.069 (2) −0.0090 (19) −0.006 (2) 0.0174 (19)
C10 0.132 (5) 0.058 (2) 0.083 (3) −0.016 (3) −0.038 (3) 0.017 (2)
C11 0.099 (4) 0.083 (3) 0.097 (3) 0.023 (3) −0.037 (3) 0.007 (3)
C12 0.081 (3) 0.106 (4) 0.111 (4) 0.033 (3) −0.023 (3) 0.006 (3)
C13 0.059 (2) 0.089 (3) 0.074 (2) 0.016 (2) −0.0084 (19) 0.007 (2)
C14 0.0495 (17) 0.0416 (16) 0.0585 (17) 0.0026 (13) −0.0020 (14) 0.0028 (13)
C15 0.0507 (17) 0.0406 (15) 0.0722 (19) 0.0010 (13) 0.0011 (15) −0.0072 (15)
C16 0.088 (3) 0.052 (2) 0.077 (2) 0.0129 (19) 0.009 (2) −0.0090 (18)
C17 0.062 (2) 0.0402 (16) 0.071 (2) 0.0004 (14) 0.0133 (17) −0.0029 (14)
C18 0.104 (3) 0.0449 (19) 0.083 (3) 0.005 (2) 0.009 (2) 0.0092 (18)
C19 0.0402 (15) 0.0411 (15) 0.0630 (17) −0.0036 (12) 0.0048 (13) 0.0051 (13)
C20 0.0445 (16) 0.0382 (15) 0.0722 (19) −0.0046 (12) 0.0036 (14) −0.0062 (14)
C21 0.055 (2) 0.0498 (18) 0.078 (2) 0.0039 (16) −0.0041 (17) −0.0032 (16)
C22 0.066 (3) 0.056 (2) 0.126 (4) 0.0054 (19) −0.030 (3) −0.011 (2)
C23 0.043 (2) 0.069 (3) 0.148 (5) 0.0080 (17) −0.008 (3) −0.009 (3)
C24 0.052 (2) 0.083 (3) 0.135 (5) 0.004 (2) 0.031 (3) −0.012 (3)
C25 0.056 (2) 0.060 (2) 0.091 (3) −0.0015 (17) 0.0156 (19) 0.001 (2)
C26 0.0369 (15) 0.0466 (16) 0.0641 (17) −0.0015 (12) 0.0024 (13) 0.0020 (14)
C27 0.0502 (19) 0.0510 (19) 0.083 (2) 0.0040 (15) 0.0034 (17) 0.0045 (17)
C28 0.058 (2) 0.0470 (19) 0.113 (3) 0.0028 (16) 0.003 (2) 0.007 (2)
C29 0.070 (3) 0.049 (2) 0.126 (4) −0.0124 (18) 0.006 (3) −0.014 (2)
C30 0.089 (3) 0.093 (3) 0.088 (3) −0.035 (3) 0.002 (3) −0.015 (3)
C31 0.063 (2) 0.070 (2) 0.070 (2) −0.0136 (18) −0.0083 (18) −0.0008 (18)
C32 0.0362 (15) 0.0483 (17) 0.0624 (17) 0.0014 (12) 0.0060 (13) 0.0011 (14)
C33 0.0456 (17) 0.0442 (16) 0.073 (2) 0.0081 (13) 0.0025 (15) −0.0023 (14)
C34 0.0499 (18) 0.0363 (15) 0.085 (2) −0.0017 (13) 0.0023 (16) 0.0065 (15)
C35 0.062 (2) 0.079 (3) 0.071 (2) −0.014 (2) −0.0045 (18) −0.005 (2)
C36 0.108 (4) 0.129 (5) 0.069 (2) −0.034 (3) 0.008 (3) −0.017 (3)
N1 0.0457 (14) 0.0392 (13) 0.0574 (14) 0.0019 (10) −0.0038 (11) −0.0014 (11)
N2 0.0589 (18) 0.0402 (15) 0.081 (2) 0.0012 (12) −0.0044 (16) −0.0011 (13)
N3 0.0396 (13) 0.0426 (13) 0.0622 (14) 0.0000 (10) 0.0053 (11) 0.0027 (11)
N4 0.0577 (18) 0.0550 (18) 0.0772 (19) 0.0000 (15) 0.0121 (15) −0.0127 (15)
O1 0.0695 (16) 0.0490 (13) 0.0834 (16) −0.0016 (12) −0.0239 (14) 0.0030 (12)
O2 0.0626 (17) 0.0519 (15) 0.106 (2) −0.0026 (12) 0.0136 (15) −0.0058 (14)
O3 0.0511 (13) 0.0584 (14) 0.0791 (16) −0.0047 (11) 0.0173 (12) −0.0021 (12)
O4 0.0760 (19) 0.094 (2) 0.0821 (18) 0.0198 (17) −0.0026 (16) 0.0077 (17)
S1 0.0985 (8) 0.0656 (6) 0.0537 (4) 0.0074 (5) 0.0004 (5) −0.0062 (4)
S2 0.0592 (5) 0.0476 (5) 0.0805 (6) −0.0027 (4) 0.0059 (4) 0.0147 (4)
O5C 0.059 (7) 0.114 (11) 0.103 (9) 0.018 (7) 0.012 (6) −0.027 (8)
O5B 0.172 (12) 0.172 (12) 0.47 (4) 0.015 (16) −0.096 (18) −0.096 (18)

Geometric parameters (Å, º)

O5A—O5Ai 1.33 (4) C19—C20 1.515 (4)
C1—C2 1.363 (5) C19—S2 1.822 (3)
C1—C6 1.391 (5) C19—H19 0.9800
C1—N1 1.439 (4) C20—C21 1.379 (5)
C2—C3 1.415 (6) C20—C25 1.384 (5)
C2—H2 0.9300 C21—C22 1.377 (6)
C3—C4 1.363 (8) C21—H21 0.9300
C3—H3 0.9300 C22—C23 1.384 (8)
C4—C5 1.352 (8) C22—H22 0.9300
C4—H4 0.9300 C23—C24 1.333 (7)
C5—C6 1.385 (6) C23—H23 0.9300
C5—H5 0.9300 C24—C25 1.384 (7)
C6—H6 0.9300 C24—H24 0.9300
C7—N1 1.477 (4) C25—H25 0.9300
C7—C8 1.496 (5) C26—C31 1.385 (5)
C7—S1 1.827 (4) C26—C27 1.388 (5)
C7—H7 0.9800 C26—N3 1.449 (4)
C8—C13 1.377 (6) C27—C28 1.379 (6)
C8—C9 1.388 (5) C27—H27 0.9300
C9—C10 1.440 (7) C28—C29 1.378 (7)
C9—H9 0.9300 C28—H28 0.9300
C10—C11 1.321 (8) C29—C30 1.376 (7)
C10—H10 0.9300 C29—H29 0.9300
C11—C12 1.322 (8) C30—C31 1.392 (6)
C11—H11 0.9300 C30—H30 0.9300
C12—C13 1.386 (7) C31—H31 0.9300
C12—H12 0.9300 C32—O3 1.208 (4)
C13—H13 0.9300 C32—N3 1.382 (4)
C14—O1 1.225 (4) C32—C33 1.535 (5)
C14—N1 1.363 (4) C33—N4 1.446 (5)
C14—C15 1.505 (5) C33—C34 1.516 (5)
C15—N2 1.444 (5) C33—H33 0.9800
C15—C16 1.525 (5) C34—S2 1.796 (4)
C15—H15 0.9800 C34—H34A 0.9700
C16—S1 1.814 (4) C34—H34B 0.9700
C16—H16A 0.9700 C35—O4 1.232 (5)
C16—H16B 0.9700 C35—N4 1.340 (6)
C17—O2 1.236 (5) C35—C36 1.510 (6)
C17—N2 1.346 (5) C36—H36A 0.9600
C17—C18 1.486 (6) C36—H36B 0.9600
C18—H18A 0.9600 C36—H36C 0.9600
C18—H18B 0.9600 N2—H2N 0.87 (6)
C18—H18C 0.9600 N4—H4N 0.90 (4)
C19—N3 1.464 (4)
C2—C1—C6 120.0 (3) C21—C20—C19 122.6 (3)
C2—C1—N1 120.1 (3) C25—C20—C19 118.8 (3)
C6—C1—N1 119.9 (3) C22—C21—C20 119.9 (4)
C1—C2—C3 118.6 (4) C22—C21—H21 120.1
C1—C2—H2 120.7 C20—C21—H21 120.1
C3—C2—H2 120.7 C21—C22—C23 120.5 (5)
C4—C3—C2 121.2 (5) C21—C22—H22 119.7
C4—C3—H3 119.4 C23—C22—H22 119.7
C2—C3—H3 119.4 C24—C23—C22 119.7 (4)
C5—C4—C3 119.3 (4) C24—C23—H23 120.2
C5—C4—H4 120.4 C22—C23—H23 120.2
C3—C4—H4 120.4 C23—C24—C25 120.8 (4)
C4—C5—C6 121.2 (4) C23—C24—H24 119.6
C4—C5—H5 119.4 C25—C24—H24 119.6
C6—C5—H5 119.4 C24—C25—C20 120.4 (5)
C5—C6—C1 119.7 (4) C24—C25—H25 119.8
C5—C6—H6 120.1 C20—C25—H25 119.8
C1—C6—H6 120.1 C31—C26—C27 120.3 (3)
N1—C7—C8 115.7 (3) C31—C26—N3 119.3 (3)
N1—C7—S1 109.0 (2) C27—C26—N3 120.4 (3)
C8—C7—S1 109.9 (2) C28—C27—C26 119.8 (4)
N1—C7—H7 107.3 C28—C27—H27 120.1
C8—C7—H7 107.3 C26—C27—H27 120.1
S1—C7—H7 107.3 C29—C28—C27 120.2 (4)
C13—C8—C9 119.3 (4) C29—C28—H28 119.9
C13—C8—C7 118.9 (4) C27—C28—H28 119.9
C9—C8—C7 121.8 (3) C30—C29—C28 120.3 (4)
C8—C9—C10 116.8 (4) C30—C29—H29 119.9
C8—C9—H9 121.6 C28—C29—H29 119.9
C10—C9—H9 121.6 C29—C30—C31 120.2 (4)
C11—C10—C9 121.2 (5) C29—C30—H30 119.9
C11—C10—H10 119.4 C31—C30—H30 119.9
C9—C10—H10 119.4 C26—C31—C30 119.3 (4)
C10—C11—C12 121.8 (5) C26—C31—H31 120.4
C10—C11—H11 119.1 C30—C31—H31 120.4
C12—C11—H11 119.1 O3—C32—N3 120.0 (3)
C11—C12—C13 120.0 (5) O3—C32—C33 120.1 (3)
C11—C12—H12 120.0 N3—C32—C33 119.7 (3)
C13—C12—H12 120.0 N4—C33—C34 112.9 (3)
C8—C13—C12 120.8 (5) N4—C33—C32 109.4 (3)
C8—C13—H13 119.6 C34—C33—C32 116.3 (3)
C12—C13—H13 119.6 N4—C33—H33 105.8
O1—C14—N1 123.4 (3) C34—C33—H33 105.8
O1—C14—C15 122.1 (3) C32—C33—H33 105.8
N1—C14—C15 114.5 (3) C33—C34—S2 108.6 (3)
N2—C15—C14 110.3 (3) C33—C34—H34A 110.0
N2—C15—C16 111.1 (3) S2—C34—H34A 110.0
C14—C15—C16 109.9 (3) C33—C34—H34B 110.0
N2—C15—H15 108.5 S2—C34—H34B 110.0
C14—C15—H15 108.5 H34A—C34—H34B 108.3
C16—C15—H15 108.5 O4—C35—N4 121.3 (4)
C15—C16—S1 112.7 (2) O4—C35—C36 121.8 (5)
C15—C16—H16A 109.1 N4—C35—C36 116.8 (5)
S1—C16—H16A 109.1 C14—N1—C1 120.3 (3)
C15—C16—H16B 109.1 C14—N1—C7 117.3 (3)
S1—C16—H16B 109.1 C1—N1—C7 122.4 (3)
H16A—C16—H16B 107.8 C17—N2—C15 122.7 (3)
O2—C17—N2 119.3 (3) C17—N2—H2N 126 (4)
O2—C17—C18 123.2 (3) C15—N2—H2N 111 (4)
N2—C17—C18 117.5 (4) C32—N3—C26 118.4 (3)
N3—C19—C20 114.2 (3) C32—N3—C19 128.0 (3)
N3—C19—S2 112.6 (2) C26—N3—C19 113.5 (2)
C20—C19—S2 111.1 (2) C35—N4—C33 122.7 (3)
N3—C19—H19 106.1 C35—N4—H4N 135 (2)
C20—C19—H19 106.1 C33—N4—H4N 102 (2)
S2—C19—H19 106.1 C16—S1—C7 97.23 (17)
C21—C20—C25 118.6 (3) C34—S2—C19 95.94 (15)
C6—C1—C2—C3 −2.1 (5) C29—C30—C31—C26 0.5 (7)
N1—C1—C2—C3 178.6 (3) O3—C32—C33—N4 36.7 (4)
C1—C2—C3—C4 2.6 (7) N3—C32—C33—N4 −147.8 (3)
C2—C3—C4—C5 −1.7 (7) O3—C32—C33—C34 166.0 (3)
C3—C4—C5—C6 0.2 (7) N3—C32—C33—C34 −18.5 (4)
C4—C5—C6—C1 0.2 (6) N4—C33—C34—S2 −177.7 (2)
C2—C1—C6—C5 0.8 (5) C32—C33—C34—S2 54.8 (3)
N1—C1—C6—C5 −179.9 (3) O1—C14—N1—C1 −1.1 (5)
N1—C7—C8—C13 106.9 (4) C15—C14—N1—C1 177.6 (3)
S1—C7—C8—C13 −129.2 (3) O1—C14—N1—C7 179.9 (3)
N1—C7—C8—C9 −74.5 (4) C15—C14—N1—C7 −1.3 (4)
S1—C7—C8—C9 49.4 (4) C2—C1—N1—C14 −62.4 (4)
C13—C8—C9—C10 −2.3 (6) C6—C1—N1—C14 118.4 (4)
C7—C8—C9—C10 179.1 (3) C2—C1—N1—C7 116.5 (4)
C8—C9—C10—C11 0.7 (7) C6—C1—N1—C7 −62.7 (4)
C9—C10—C11—C12 −0.2 (8) C8—C7—N1—C14 −174.3 (3)
C10—C11—C12—C13 1.3 (9) S1—C7—N1—C14 61.3 (3)
C9—C8—C13—C12 3.5 (6) C8—C7—N1—C1 6.7 (4)
C7—C8—C13—C12 −177.9 (4) S1—C7—N1—C1 −117.7 (3)
C11—C12—C13—C8 −3.0 (8) O2—C17—N2—C15 −2.4 (6)
O1—C14—C15—N2 −6.0 (5) C18—C17—N2—C15 177.4 (3)
N1—C14—C15—N2 175.3 (3) C14—C15—N2—C17 −152.0 (3)
O1—C14—C15—C16 116.8 (4) C16—C15—N2—C17 85.9 (4)
N1—C14—C15—C16 −61.9 (4) O3—C32—N3—C26 −4.8 (5)
N2—C15—C16—S1 179.1 (3) C33—C32—N3—C26 179.7 (3)
C14—C15—C16—S1 56.7 (4) O3—C32—N3—C19 177.3 (3)
N3—C19—C20—C21 −34.8 (4) C33—C32—N3—C19 1.8 (5)
S2—C19—C20—C21 93.9 (3) C31—C26—N3—C32 117.9 (4)
N3—C19—C20—C25 147.0 (3) C27—C26—N3—C32 −64.9 (4)
S2—C19—C20—C25 −84.3 (3) C31—C26—N3—C19 −63.9 (4)
C25—C20—C21—C22 2.0 (5) C27—C26—N3—C19 113.2 (3)
C19—C20—C21—C22 −176.3 (3) C20—C19—N3—C32 104.5 (4)
C20—C21—C22—C23 0.0 (6) S2—C19—N3—C32 −23.5 (4)
C21—C22—C23—C24 −2.2 (7) C20—C19—N3—C26 −73.5 (3)
C22—C23—C24—C25 2.4 (8) S2—C19—N3—C26 158.6 (2)
C23—C24—C25—C20 −0.4 (7) O4—C35—N4—C33 1.1 (6)
C21—C20—C25—C24 −1.8 (6) C36—C35—N4—C33 −177.4 (4)
C19—C20—C25—C24 176.5 (4) C34—C33—N4—C35 −74.5 (4)
C31—C26—C27—C28 −1.9 (6) C32—C33—N4—C35 56.6 (4)
N3—C26—C27—C28 −179.0 (3) C15—C16—S1—C7 −1.7 (4)
C26—C27—C28—C29 1.3 (6) N1—C7—S1—C16 −53.5 (3)
C27—C28—C29—C30 0.2 (7) C8—C7—S1—C16 178.7 (3)
C28—C29—C30—C31 −1.1 (7) C33—C34—S2—C19 −65.8 (2)
C27—C26—C31—C30 1.0 (6) N3—C19—S2—C34 50.5 (3)
N3—C26—C31—C30 178.1 (4) C20—C19—S2—C34 −79.1 (2)

Symmetry code: (i) −y, −x, −z+1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2N···O1 0.88 (6) 2.22 (5) 2.678 (4) 113 (5)
N4—H4N···O2 0.90 (4) 2.03 (4) 2.899 (5) 162 (4)
C7—H7···O3 0.98 2.50 3.241 (4) 132
C21—H21···O4 0.93 2.48 3.375 (5) 162

References

  1. Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  3. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  4. Potts, K. T., Baum, J., Houghton, E., Roy, D. N. & Singh, U. P. (1974). J. Org. Chem. 39, 3619–3627.
  5. Raasch, M. S. (1974). J. Heterocycl. Chem. 11, 587–593.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Yennawar, H. P., Bendinsky, R. V., Coyle, D. J., Cali, A. S. & Silverberg, L. J. (2014). Acta Cryst. E70, o465. [DOI] [PMC free article] [PubMed]
  8. Yennawar, H. P. & Silverberg, L. J. (2014). Acta Cryst. E70, o133. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989014026425/hb7315sup1.cif

e-71-00062-sup1.cif (28.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014026425/hb7315Isup2.hkl

e-71-00062-Isup2.hkl (435KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014026425/hb7315Isup3.mol

Supporting information file. DOI: 10.1107/S2056989014026425/hb7315Isup4.cml

CCDC reference: 1037009

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES