Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 1;71(Pt 1):o17–o18. doi: 10.1107/S2056989014026127

Crystal structure of 2-aza­niumyl-3-bromo-6-oxo-5,6-di­hydro­pyrido[1,2-a]quinoxalin-11-ium dibromide

Md Serajul Haque Faizi a, Natalia O Sharkina b,*, Turganbay S Iskenderov b
PMCID: PMC4331889  PMID: 25705482

Abstract

The title salt, C12H10BrN3O2+·2Br, was synthesized from the reaction of N 1,N 4-bis­(pyridin-2-yl­methyl­idene)benzene-1,4-di­amine and bromine in a methanol solution. All non-H atoms of the 2-aza­niumyl-3-bromo-6-oxo-5,6-di­hydro­pyrido[1,2-a]quinoxalin-11-ium cation are nearly coplanar, the maximum deviation being 0.114 (4) Å. In the crystal, the cations and anions are linked through N—H⋯Br hydrogen bonds and weak C—H⋯Br inter­actions, forming a three-dimensional supra­molecular architecture. A short Br⋯Br contact [3.3088 (9) Å] is observed in the crystal.

Keywords: crystal structure; bromide; pyrido[1,2-a]quinoxalin-11-ium; C—H⋯Br inter­actions

Related literature  

For applications of quinoxalines, see: Duffy et al. (2002); Gazit et al. (1996); Harmenberg et al. (1991); Naylor et al. (1993). For types of quinoxalines and a structure similar to title compound, see: Eiden & Peter (1966); Koner & Ray (2008); Fritsky et al. (2006); Kanderal et al. (2005); Moroz et al. (2012). For background to and applications of related compounds, see: Faizi & Sen (2014); Faizi et al. (2014).graphic file with name e-71-00o17-scheme1.jpg

Experimental  

Crystal data  

  • C12H10BrN3O2+·2Br

  • M r = 451.96

  • Monoclinic, Inline graphic

  • a = 5.6782 (2) Å

  • b = 11.9822 (4) Å

  • c = 20.2528 (7) Å

  • β = 90.891 (2)°

  • V = 1377.78 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 8.78 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection  

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.178, T max = 0.273

  • 14369 measured reflections

  • 2424 independent reflections

  • 1804 reflections with I > 2σ(I)

  • R int = 0.106

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.130

  • S = 0.97

  • 2424 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 1.23 e Å−3

  • Δρmin = −0.88 e Å−3

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenberg & Putz, 2006); software used to prepare material for publication: DIAMOND.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989014026127/xu5829sup1.cif

e-71-00o17-sup1.cif (20.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014026127/xu5829Isup2.hkl

e-71-00o17-Isup2.hkl (119.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014026127/xu5829Isup3.cml

. DOI: 10.1107/S2056989014026127/xu5829fig1.tif

The mol­ecular conformation and atom-numbering scheme for the title compound, with non-H atoms drawn as 40% probability displacement ellipsoids.

CCDC reference: 1036569

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N2H2ABr1i 0.88 2.46 3.322(5) 167
N3H1N3Br2ii 0.91 2.53 3.432(5) 171
N3H2N3Br2iii 0.91 2.42 3.287(5) 160
N3H3N3Br1 0.91 2.50 3.374(5) 162
C2H2Br2iv 0.95 2.91 3.813(6) 160
C3H3Br1v 0.95 2.85 3.752(7) 160
C8H8Br1i 0.95 2.86 3.672(6) 144
C11H11Br2ii 0.95 2.80 3.639(6) 148

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

The authors are grateful to the Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India, for X-ray data collection.

supplementary crystallographic information

S1. Comment

Quinoxalines are an important class of heterocyclic compounds, some of which are found to be useful as fluorophores, dyes, and antibiotics (Duffy et al., 2002; Gazit et al., 1996). Many drug candidates bearing quinoxaline core structures are in clinical trials in antiviral, anticancer and CNS (central nervous system) therapeutic areas (Harmenberg et al., 1991; Naylor et al., 1993). The present work is a part of an ongoing structural study of Schiff bases and their utilization in the synthesis of previously unknown organic and polynuclear coordination compounds (Faizi & Sen, 2014; Faizi et al., 2014; Moroz et al., 2012), and we report here synthesis and structure of 2-azaniumyl-3-bromo-6-oxo-5,6-dihydropyrido[1,2-a]quinoxalin-11-ium bromide (ABODQ). There are very few examples similar to title compound have been reported in the literature (Eiden & Peter, 1966).

The title compound was synthesized from the reaction of two equimolar amounts of molecular bromine and pyridine derivative Schiff base N1,N4-bis(pyridine-2-ylmethylene) benzene-1,4-diamine (BPYBD). The cyclization occurs by oxidation of BPYBD, reduction of molecular bromine and finally hydrolysis of the imine bond which creates the dication at two of the nitrogen atoms in the quinoxaline ring system.

In the structure of the title bromide salt, the dication is essentially planar with a longer C10—N3 distance of 1.45 (3) Å, compared to the usual Caro—Namine single bond distance of 1.43 (3) Å. This might be due to the electron withdrawing effect of positively charged pyridine, which increased the C-Namine bond order. Other C—C and C—N bond distances are well within the limits expected for aromatic rings (Koner & Ray, 2008; Kanderal et al., 2005; Fritsky et al., 2006).

The asymmetric unit contains a discrete 2-azaniumyl-3-bromo-6-oxo-5,6-dihydropyrido[1,2-a]quinoxalin-11-ium cation, with a protonated amine, pyridine group, and two bromide anion (Fig 1). In title compound, the ions are connected into a three dimensional hydrogen-bonded network via N—H···Br and C—H···Br hydrogen bonds (Table 1). All Hammonium atoms and Hpyrazine N—H group are involved in hydrogen bonds with two different bromide ions, and each anion accepts hydrogen bonds from three different cations. No intermolecular π–π interations are evident in the hydrocarbon layer in title compound.

S2. Experimental

Molecular bromine (220 mg, 72.0 mL, 1.40 mmol) was added to a methanolic solution (10 ml) of Schiff base, N1,N4-bis (pyridine-2-ylmethylene)benzene-1,4-diamine (BPYBD) (197 mg, 0.70 mmol). The color of the solution was immediately changed from yellow to orange. The reaction mixture was stirred for 4 h at room temperature under hood. The resulting yellow precipitate was recovered by filtration, washed several times with a small portions of acetone and then with diethyl ether to give 200 mg (64%) of 2-azaniumyl-3-bromo-6-oxo-5,6-dihydropyrido [1,2-a]quinoxalin-11-ium bromide (ABODQ). The crystal of the title compound suitable for X-ray analysis was obtained within 3 days by slow evaporation of the methanol solvent.

S3. Refinement

H atoms were placed in calculated positions and treated as riding on their parent atoms with C—H = 0.95 Å, N—H = 0.88 or 0.91 Å. Uiso(H) = 1.5Ueq(N) for the amino-H atoms and 1.2Ueq(C,N) for the others.

Figures

Fig. 1.

Fig. 1.

The molecular conformation and atom-numbering scheme for the title compound, with non-H atoms drawn as 40% probability displacement ellipsoids.

Crystal data

C12H10BrN3O2+·2Br F(000) = 864
Mr = 451.96 Dx = 2.179 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 999 reflections
a = 5.6782 (2) Å θ = 2.6–28.6°
b = 11.9822 (4) Å µ = 8.78 mm1
c = 20.2528 (7) Å T = 100 K
β = 90.891 (2)° Block, yellow
V = 1377.78 (8) Å3 0.30 × 0.25 × 0.20 mm
Z = 4

Data collection

Bruker SMART APEX CCD diffractometer 2424 independent reflections
Radiation source: fine-focus sealed tube 1804 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.106
ω scans θmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −6→6
Tmin = 0.178, Tmax = 0.273 k = −14→14
14369 measured reflections l = −23→24

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130 H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0801P)2] where P = (Fo2 + 2Fc2)/3
2424 reflections (Δ/σ)max < 0.001
173 parameters Δρmax = 1.23 e Å3
0 restraints Δρmin = −0.88 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 1.1684 (11) 0.3466 (5) 0.6250 (3) 0.0348 (16)
H1 1.1805 0.3779 0.5821 0.042*
C2 1.3279 (12) 0.3771 (5) 0.6724 (3) 0.0404 (17)
H2 1.4479 0.4297 0.6628 0.049*
C3 1.3135 (12) 0.3313 (6) 0.7341 (3) 0.0432 (18)
H3 1.4246 0.3511 0.7676 0.052*
C4 1.1375 (12) 0.2564 (6) 0.7472 (3) 0.0408 (17)
H4 1.1293 0.2230 0.7896 0.049*
C5 0.9719 (11) 0.2291 (5) 0.6989 (3) 0.0308 (15)
C6 0.7750 (11) 0.1557 (5) 0.7166 (3) 0.0327 (15)
C7 0.6487 (11) 0.1672 (5) 0.6019 (3) 0.0284 (14)
C8 0.4824 (11) 0.1344 (5) 0.5543 (3) 0.0297 (14)
H8 0.3582 0.0851 0.5655 0.036*
C9 0.5012 (11) 0.1750 (5) 0.4905 (3) 0.0287 (14)
C10 0.6803 (11) 0.2482 (5) 0.4745 (3) 0.0272 (14)
C11 0.8407 (11) 0.2812 (5) 0.5212 (3) 0.0294 (14)
H11 0.9619 0.3323 0.5104 0.035*
C12 0.8249 (11) 0.2387 (5) 0.5857 (3) 0.0252 (14)
N1 0.9939 (8) 0.2736 (4) 0.6368 (2) 0.0262 (11)
N2 0.6287 (9) 0.1254 (4) 0.6658 (2) 0.0319 (12)
H2A 0.5160 0.0770 0.6737 0.038*
N3 0.6987 (9) 0.2912 (4) 0.4080 (2) 0.0343 (13)
H1N3 0.8278 0.3360 0.4054 0.052*
H2N3 0.5673 0.3314 0.3976 0.052*
H3N3 0.7126 0.2334 0.3792 0.052*
O1 0.7430 (8) 0.1251 (4) 0.7735 (2) 0.0428 (12)
Br1 0.82448 (12) 0.04974 (5) 0.33038 (3) 0.0399 (2)
Br2 0.21399 (13) 0.05913 (6) 0.91141 (4) 0.0478 (3)
Br3 0.26693 (12) 0.12868 (6) 0.42784 (3) 0.0388 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.035 (4) 0.036 (4) 0.033 (4) −0.004 (3) 0.000 (3) 0.003 (3)
C2 0.038 (4) 0.036 (4) 0.047 (4) −0.002 (3) −0.002 (3) −0.002 (3)
C3 0.038 (5) 0.053 (5) 0.038 (4) 0.003 (4) −0.005 (3) −0.015 (4)
C4 0.039 (4) 0.053 (4) 0.030 (4) 0.001 (3) −0.002 (3) −0.007 (3)
C5 0.031 (4) 0.040 (4) 0.021 (3) 0.004 (3) 0.002 (3) −0.005 (3)
C6 0.030 (4) 0.040 (4) 0.028 (4) 0.006 (3) −0.002 (3) −0.008 (3)
C7 0.036 (4) 0.031 (4) 0.018 (3) 0.002 (3) 0.002 (3) −0.001 (3)
C8 0.026 (4) 0.031 (3) 0.032 (4) 0.001 (3) 0.004 (3) 0.000 (3)
C9 0.029 (4) 0.033 (3) 0.024 (3) 0.004 (3) −0.008 (3) −0.005 (3)
C10 0.030 (4) 0.035 (4) 0.016 (3) 0.005 (3) 0.006 (2) −0.002 (3)
C11 0.023 (4) 0.035 (4) 0.030 (3) −0.002 (3) 0.007 (3) −0.002 (3)
C12 0.026 (4) 0.027 (3) 0.022 (3) 0.000 (3) 0.003 (3) −0.002 (3)
N1 0.026 (3) 0.030 (3) 0.023 (3) 0.001 (2) 0.001 (2) −0.002 (2)
N2 0.033 (3) 0.037 (3) 0.026 (3) −0.002 (2) 0.005 (2) 0.002 (2)
N3 0.041 (4) 0.043 (3) 0.020 (3) 0.005 (2) 0.004 (2) 0.002 (2)
O1 0.050 (3) 0.062 (3) 0.016 (2) −0.007 (2) 0.008 (2) 0.004 (2)
Br1 0.0317 (5) 0.0464 (5) 0.0415 (4) −0.0044 (3) 0.0032 (3) −0.0017 (3)
Br2 0.0423 (5) 0.0435 (5) 0.0579 (5) −0.0028 (3) 0.0115 (4) −0.0072 (3)
Br3 0.0370 (5) 0.0460 (5) 0.0333 (4) 0.0011 (3) −0.0044 (3) −0.0048 (3)

Geometric parameters (Å, º)

C1—N1 1.346 (7) C7—N2 1.394 (7)
C1—C2 1.359 (9) C8—C9 1.387 (8)
C1—H1 0.9500 C8—H8 0.9500
C2—C3 1.368 (9) C9—C10 1.385 (9)
C2—H2 0.9500 C9—Br3 1.907 (6)
C3—C4 1.372 (10) C10—C11 1.362 (8)
C3—H3 0.9500 C10—N3 1.449 (7)
C4—C5 1.384 (8) C11—C12 1.405 (8)
C4—H4 0.9500 C11—H11 0.9500
C5—N1 1.374 (7) C12—N1 1.462 (7)
C5—C6 1.471 (9) N2—H2A 0.8800
C6—O1 1.225 (7) N3—H1N3 0.9100
C6—N2 1.361 (8) N3—H2N3 0.9100
C7—C12 1.361 (8) N3—H3N3 0.9100
C7—C8 1.395 (8)
N1—C1—C2 122.3 (6) C8—C9—C10 120.5 (6)
N1—C1—H1 118.9 C8—C9—Br3 117.1 (5)
C2—C1—H1 118.9 C10—C9—Br3 122.4 (4)
C1—C2—C3 119.2 (7) C11—C10—C9 120.5 (5)
C1—C2—H2 120.4 C11—C10—N3 119.0 (6)
C3—C2—H2 120.4 C9—C10—N3 120.5 (5)
C2—C3—C4 119.6 (6) C10—C11—C12 119.2 (6)
C2—C3—H3 120.2 C10—C11—H11 120.4
C4—C3—H3 120.2 C12—C11—H11 120.4
C3—C4—C5 120.4 (6) C7—C12—C11 120.7 (6)
C3—C4—H4 119.8 C7—C12—N1 119.1 (5)
C5—C4—H4 119.8 C11—C12—N1 120.2 (5)
N1—C5—C4 119.0 (6) C1—N1—C5 119.5 (5)
N1—C5—C6 122.3 (5) C1—N1—C12 122.5 (5)
C4—C5—C6 118.7 (6) C5—N1—C12 118.0 (5)
O1—C6—N2 122.2 (6) C6—N2—C7 123.2 (5)
O1—C6—C5 122.1 (6) C6—N2—H2A 118.4
N2—C6—C5 115.7 (5) C7—N2—H2A 118.4
C12—C7—C8 120.2 (5) C10—N3—H1N3 109.5
C12—C7—N2 121.4 (5) C10—N3—H2N3 109.5
C8—C7—N2 118.5 (6) H1N3—N3—H2N3 109.5
C9—C8—C7 119.0 (6) C10—N3—H3N3 109.5
C9—C8—H8 120.5 H1N3—N3—H3N3 109.5
C7—C8—H8 120.5 H2N3—N3—H3N3 109.5
N1—C1—C2—C3 0.9 (10) N2—C7—C12—C11 −179.2 (5)
C1—C2—C3—C4 −0.7 (11) C8—C7—C12—N1 178.6 (5)
C2—C3—C4—C5 −1.5 (11) N2—C7—C12—N1 −1.1 (9)
C3—C4—C5—N1 3.4 (10) C10—C11—C12—C7 −1.4 (9)
C3—C4—C5—C6 −175.0 (6) C10—C11—C12—N1 −179.5 (5)
N1—C5—C6—O1 −172.7 (6) C2—C1—N1—C5 1.1 (9)
C4—C5—C6—O1 5.7 (9) C2—C1—N1—C12 −178.7 (6)
N1—C5—C6—N2 6.4 (8) C4—C5—N1—C1 −3.2 (9)
C4—C5—C6—N2 −175.2 (6) C6—C5—N1—C1 175.2 (5)
C12—C7—C8—C9 0.6 (9) C4—C5—N1—C12 176.5 (5)
N2—C7—C8—C9 −179.7 (5) C6—C5—N1—C12 −5.1 (8)
C7—C8—C9—C10 −0.9 (9) C7—C12—N1—C1 −178.0 (6)
C7—C8—C9—Br3 −179.4 (4) C11—C12—N1—C1 0.1 (9)
C8—C9—C10—C11 0.1 (9) C7—C12—N1—C5 2.3 (8)
Br3—C9—C10—C11 178.4 (4) C11—C12—N1—C5 −179.6 (5)
C8—C9—C10—N3 −179.5 (5) O1—C6—N2—C7 174.0 (6)
Br3—C9—C10—N3 −1.1 (8) C5—C6—N2—C7 −5.1 (8)
C9—C10—C11—C12 1.1 (9) C12—C7—N2—C6 2.7 (9)
N3—C10—C11—C12 −179.3 (5) C8—C7—N2—C6 −177.0 (5)
C8—C7—C12—C11 0.6 (9)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2A···Br1i 0.88 2.46 3.322 (5) 167
N3—H1N3···Br2ii 0.91 2.53 3.432 (5) 171
N3—H2N3···Br2iii 0.91 2.42 3.287 (5) 160
N3—H3N3···Br1 0.91 2.50 3.374 (5) 162
C2—H2···Br2iv 0.95 2.91 3.813 (6) 160
C3—H3···Br1v 0.95 2.85 3.752 (7) 160
C8—H8···Br1i 0.95 2.86 3.672 (6) 144
C11—H11···Br2ii 0.95 2.80 3.639 (6) 148

Symmetry codes: (i) −x+1, −y, −z+1; (ii) x+1, −y+1/2, z−1/2; (iii) x, −y+1/2, z−1/2; (iv) −x+2, y+1/2, −z+3/2; (v) x+1, −y+1/2, z+1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: XU5829).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Brandenberg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Duffy, K. J., Haltiwanger, R. C., Freyer, A. J., Li, F., Luengo, J. I. & Cheng, H.-Y. (2002). J. Chem. Soc. Perkin Trans. 2, pp. 181–185.
  6. Eiden, F. & Peter, P. (1966). Arch. Pharm. Pharm. Med. Chem. 299, 139–146. [DOI] [PubMed]
  7. Faizi, M. S. H., Mashrai, A., Shahid, M. & Ahmad, M. (2014). Acta Cryst. E70, o806. [DOI] [PMC free article] [PubMed]
  8. Faizi, M. S. H. & Sen, P. (2014). Acta Cryst. E70, m206–m207. [DOI] [PMC free article] [PubMed]
  9. Fritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125–4127. [DOI] [PubMed]
  10. Gazit, A., App, H., McMahon, G., Chen, J., Levitzki, A. & Bohmer, F. D. (1996). J. Med. Chem. 39, 2170–2177. [DOI] [PubMed]
  11. Harmenberg, J., Åkesson-Johansson, A., Gräslund, A., Malmfors, T., Bergman, J., Wahren, B., Åkerfeldt, S., Lundblad, L. & Cox, S. (1991). Antiviral Res. 15, 193–204. [DOI] [PubMed]
  12. Kanderal, O. M., Kozlowski, H., Dobosz, A., Swiatek-Kozlowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428–1437. [DOI] [PubMed]
  13. Koner, R. R. & Ray, M. (2008). Inorg. Chem. 47, 9122–9124. [DOI] [PubMed]
  14. Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447. [DOI] [PubMed]
  15. Naylor, M. A., Stephens, M. A., Nolan, J., Sutton, B., Tocher, J. H., Fielden, E. M., Adams, G. E. & Stratford, I. J. (1993). Anticancer Drug. Des. 8, 439–461. [PubMed]
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989014026127/xu5829sup1.cif

e-71-00o17-sup1.cif (20.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014026127/xu5829Isup2.hkl

e-71-00o17-Isup2.hkl (119.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014026127/xu5829Isup3.cml

. DOI: 10.1107/S2056989014026127/xu5829fig1.tif

The mol­ecular conformation and atom-numbering scheme for the title compound, with non-H atoms drawn as 40% probability displacement ellipsoids.

CCDC reference: 1036569

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES