Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 1;71(Pt 1):o60–o61. doi: 10.1107/S2056989014027431

Crystal structure of 1-(2,4-di­methyl­phen­yl)urea

L Jayalakshmi a, C Ramalingan a, B Sridhar b, S Selvanayagam c,*
PMCID: PMC4331890  PMID: 25705510

Abstract

In the title urea derivative, C9H12N2O, the dihedral angle between the benzene ring and the mean plane of the urea group, N—C(=O)—N, is 86.6 (1)°. In the crystal, the urea O atom is involved in three N—H⋯O hydrogen bonds. Mol­ecules are linked via pairs of N—H⋯O hydrogen bonds, forming inversion dimers with an R 2 2(8) ring motif. The dimers are linked by further N—H⋯O hydrogen bonds, forming two-dimensional networks lying parallel to (100).

Keywords: crystal structure, urea, urea derivatives, hydrogen bonding

Related literature  

For general background to urea derivatives and their biological applications and properties, see: Ramalingan & Kwak (2008); Ramalingan et al. (2010); Yang et al. (2013); Safari & Gandomi-Ravandi (2014); Suzuki et al. (2013); Boulahjar et al. (2012); Zhang et al. (2014)graphic file with name e-71-00o60-scheme1.jpg

Experimental  

Crystal data  

  • C9H12N2O

  • M r = 164.21

  • Monoclinic, Inline graphic

  • a = 14.631 (4) Å

  • b = 7.0633 (19) Å

  • c = 8.786 (2) Å

  • β = 93.530 (4)°

  • V = 906.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 292 K

  • 0.20 × 0.18 × 0.16 mm

Data collection  

  • Bruker SMART APEX CCD area-detector diffractometer

  • 8026 measured reflections

  • 1556 independent reflections

  • 1284 reflections with I > 2σ(I)

  • R int = 0.028

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.100

  • wR(F 2) = 0.349

  • S = 1.59

  • 1556 reflections

  • 119 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2013 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989014027431/su5043sup1.cif

e-71-00o60-sup1.cif (319.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014027431/su5043Isup2.hkl

e-71-00o60-Isup2.hkl (85.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014027431/su5043Isup3.cml

. DOI: 10.1107/S2056989014027431/su5043fig1.tif

The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

a . DOI: 10.1107/S2056989014027431/su5043fig2.tif

A projection of the crystal packing of the title compound, along the a axis. Hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity).

CCDC reference: 1039538

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N1H1O1i 0.86 2.23 2.941(3) 140
N2H2AO1i 0.86(1) 2.24(2) 2.985(3) 145(3)
N2H2BO1ii 0.86(1) 2.12(1) 2.977(3) 173(4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

CR and SS thank the Vice Chancellor and the management of Kalasalingam University, Krishnankoil, for their support and encouragement.

supplementary crystallographic information

S1. Comment

Urea and its derivatives are important key starting materials for the construction of biologically important heterocycles (Ramalingan & Kwak, 2008; Ramalingan et al., 2010; Yang et al., 2013; Safari & Gandomi-Ravandi, 2014). They display various biological activities viz. antibacterial (Suzuki et al., 2013), antiproliferative and antitumor (Boulahjar et al., 2012), and HIV-1 integrase (Zhang et al., 2014). As a vital reactant and intermediate for the construction of heterocyclic chemical entities of biological importance, the title compound has been synthesized and single crystals were grown by slow evaporation in ethanol.

The single crystal X-ray analysis confirmed the molecular structure, as illustrated in Fig. 1. Methyl carbon atoms, C7 and C8, deviate by -0.000 (1) and -0.040 (1) Å, respectively, from the attached benzene ring. The dihedral angle between benzene ring and the mean plane through the urea atoms (N1/C9/O1/N2) is 86.6 (1)°.

In the crystal, three strong N—H···O hydrogen bonds stabilize the molecular packing (Fig. 2 and Table 1). Molecules are linked via pairs of N-H···O hydrogen bonds forming inversion dimers with an R22(8) ring motif. The dimers are linked by further N-H···O hydrogen bonds forming two-dimensional networks lying parallel to (100); see Table 1 and Fig. 2.

S2. Experimental

To a solution of 2,6-dimethylaniline (0.1 mol) in glacial acetic acid (30 ml), was added distilled water (70 ml). Sodium cyanate (0.1 mol) in medium-hot water (50 ml) was then added in a slow manner with constant stirring. The resulted solution was allowed to stand for 60 min. and then cooled in ice. It was then filtered using a Buchner funnel and the solid obtained was dried using high-vacuum. Single crystals of the title compound were obtained by slow evaporation of a solution in ethanol at room temperature.

S3. Refinement

Atoms H2A and H2B were located from a difference Fourier map and freely refined. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with N—H = 0.86 Å and C—H = 0.93-0.96 Å and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq (N,C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

A projection of the crystal packing of the title compound, along the a axis. Hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity).

Crystal data

C9H12N2O F(000) = 352
Mr = 164.21 Dx = 1.204 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 14.631 (4) Å Cell parameters from 6568 reflections
b = 7.0633 (19) Å θ = 2.8–24.6°
c = 8.786 (2) Å µ = 0.08 mm1
β = 93.530 (4)° T = 292 K
V = 906.2 (4) Å3 Block, colourless
Z = 4 0.20 × 0.18 × 0.16 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer Rint = 0.028
Radiation source: fine-focus sealed tube θmax = 25.0°, θmin = 2.8°
ω scans h = −17→17
8026 measured reflections k = −8→8
1556 independent reflections l = −10→10
1284 reflections with I > 2σ(I)

Refinement

Refinement on F2 2 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.100 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.349 w = 1/[σ2(Fo2) + (0.2P)2] where P = (Fo2 + 2Fc2)/3
S = 1.59 (Δ/σ)max = 0.001
1556 reflections Δρmax = 0.87 e Å3
119 parameters Δρmin = −0.32 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.40043 (14) 0.1453 (3) 0.55423 (18) 0.0634 (8)
N1 0.32526 (19) 0.2851 (4) 0.3520 (3) 0.0709 (10)
H1 0.3186 0.2927 0.2543 0.085*
N2 0.4476 (2) 0.0982 (4) 0.3174 (3) 0.0682 (9)
H2A 0.437 (2) 0.125 (4) 0.2228 (15) 0.060 (8)*
H2B 0.4934 (19) 0.036 (5) 0.360 (4) 0.089 (11)*
C1 0.1253 (4) 0.4077 (12) 0.5679 (5) 0.1144 (17)
H1A 0.0700 0.3530 0.5912 0.137*
C2 0.1467 (3) 0.5877 (12) 0.6154 (4) 0.122 (2)
C3 0.2259 (4) 0.6656 (8) 0.5753 (5) 0.1049 (17)
H3 0.2404 0.7876 0.6085 0.126*
C4 0.2873 (2) 0.5700 (6) 0.4854 (4) 0.0794 (11)
C5 0.2652 (2) 0.3904 (5) 0.4421 (3) 0.0666 (10)
C6 0.1852 (3) 0.3106 (8) 0.4870 (4) 0.0921 (13)
H6 0.1721 0.1855 0.4606 0.111*
C7 0.0822 (4) 0.7033 (13) 0.7118 (7) 0.178 (4)
H7A 0.0806 0.6477 0.8114 0.267*
H7B 0.0216 0.7030 0.6630 0.267*
H7C 0.1040 0.8312 0.7212 0.267*
C8 0.3708 (4) 0.6517 (7) 0.4485 (7) 0.1135 (16)
H8A 0.3942 0.5853 0.3638 0.170*
H8B 0.4142 0.6433 0.5348 0.170*
H8C 0.3612 0.7822 0.4217 0.170*
C9 0.39175 (19) 0.1749 (4) 0.4154 (3) 0.0519 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0806 (14) 0.0787 (15) 0.0316 (11) 0.0198 (9) 0.0094 (9) 0.0014 (7)
N1 0.0824 (18) 0.0971 (19) 0.0338 (12) 0.0270 (14) 0.0098 (11) 0.0074 (11)
N2 0.0857 (18) 0.0849 (18) 0.0353 (14) 0.0251 (13) 0.0137 (11) 0.0013 (10)
C1 0.090 (3) 0.193 (5) 0.063 (2) 0.031 (3) 0.025 (2) 0.007 (3)
C2 0.068 (2) 0.245 (7) 0.053 (2) 0.063 (3) 0.0003 (17) −0.015 (3)
C3 0.104 (3) 0.123 (3) 0.084 (3) 0.036 (3) −0.019 (3) −0.036 (2)
C4 0.0685 (19) 0.105 (3) 0.064 (2) 0.0184 (17) −0.0010 (15) −0.0088 (16)
C5 0.0682 (19) 0.090 (2) 0.0417 (16) 0.0245 (15) 0.0069 (13) 0.0057 (13)
C6 0.086 (2) 0.128 (3) 0.064 (2) 0.018 (2) 0.0218 (17) 0.0214 (19)
C7 0.106 (4) 0.316 (9) 0.112 (4) 0.091 (5) −0.002 (3) −0.091 (5)
C8 0.112 (3) 0.101 (3) 0.129 (4) −0.017 (3) 0.024 (3) 0.004 (3)
C9 0.0652 (16) 0.0572 (15) 0.0342 (14) 0.0069 (11) 0.0094 (11) −0.0013 (9)

Geometric parameters (Å, º)

O1—C9 1.236 (3) C3—C4 1.406 (6)
N1—C9 1.340 (4) C3—H3 0.9300
N1—C5 1.428 (4) C4—C5 1.358 (6)
N1—H1 0.8600 C4—C8 1.407 (7)
N2—C9 1.337 (4) C5—C6 1.377 (6)
N2—H2A 0.857 (10) C6—H6 0.9300
N2—H2B 0.863 (10) C7—H7A 0.9600
C1—C6 1.351 (7) C7—H7B 0.9600
C1—C2 1.368 (10) C7—H7C 0.9600
C1—H1A 0.9300 C8—H8A 0.9600
C2—C3 1.348 (9) C8—H8B 0.9600
C2—C7 1.541 (6) C8—H8C 0.9600
C9—N1—C5 121.9 (2) C6—C5—N1 120.5 (4)
C9—N1—H1 119.1 C1—C6—C5 122.2 (6)
C5—N1—H1 119.1 C1—C6—H6 118.9
C9—N2—H2A 117 (2) C5—C6—H6 118.9
C9—N2—H2B 115 (3) C2—C7—H7A 109.5
H2A—N2—H2B 128 (4) C2—C7—H7B 109.5
C6—C1—C2 119.2 (6) H7A—C7—H7B 109.5
C6—C1—H1A 120.4 C2—C7—H7C 109.5
C2—C1—H1A 120.4 H7A—C7—H7C 109.5
C3—C2—C1 119.0 (4) H7B—C7—H7C 109.5
C3—C2—C7 119.5 (7) C4—C8—H8A 109.5
C1—C2—C7 121.5 (6) C4—C8—H8B 109.5
C2—C3—C4 122.7 (5) H8A—C8—H8B 109.5
C2—C3—H3 118.7 C4—C8—H8C 109.5
C4—C3—H3 118.7 H8A—C8—H8C 109.5
C5—C4—C3 117.1 (4) H8B—C8—H8C 109.5
C5—C4—C8 121.0 (4) O1—C9—N2 122.5 (2)
C3—C4—C8 121.8 (4) O1—C9—N1 122.4 (2)
C4—C5—C6 119.7 (3) N2—C9—N1 115.1 (2)
C4—C5—N1 119.8 (3)
C6—C1—C2—C3 2.3 (7) C8—C4—C5—N1 −2.8 (5)
C6—C1—C2—C7 −178.3 (4) C9—N1—C5—C4 90.7 (4)
C1—C2—C3—C4 0.5 (7) C9—N1—C5—C6 −88.6 (4)
C7—C2—C3—C4 −178.9 (4) C2—C1—C6—C5 −4.1 (7)
C2—C3—C4—C5 −1.6 (6) C4—C5—C6—C1 2.9 (6)
C2—C3—C4—C8 −178.1 (5) N1—C5—C6—C1 −177.8 (3)
C3—C4—C5—C6 −0.1 (5) C5—N1—C9—O1 6.1 (5)
C8—C4—C5—C6 176.5 (4) C5—N1—C9—N2 −174.4 (3)
C3—C4—C5—N1 −179.4 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.86 2.23 2.941 (3) 140
N2—H2A···O1i 0.86 (1) 2.24 (2) 2.985 (3) 145 (3)
N2—H2B···O1ii 0.86 (1) 2.12 (1) 2.977 (3) 173 (4)

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, −y, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU5043).

References

  1. Boulahjar, R., Ouach, A., Matteo, C., Bourg, S., Ravache, M., le Guével, R., Marionneau, S., Oullier, T., Lozach, O., Meijer, L., Guguen-Guillouzo, C., Lazar, S., Akssira, M., Troin, Y., Guillaumet, G. & Routier, S. (2012). J. Med. Chem. 55, 9589–9606. [DOI] [PubMed]
  2. Bruker (2001). SMART and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Ramalingan, C. & Kwak, Y. W. (2008). Tetrahedron, 64, 5023–5031.
  5. Ramalingan, C., Park, S. J., Lee, I. S. & Kwak, Y. W. (2010). Tetrahedron, 66, 2987–2994.
  6. Safari, J. & Gandomi-Ravandi, S. (2014). J. Mol. Struct. 1074, 71–78.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Suzuki, H., Utsunomiya, I., Shudo, K., Fukuhara, N., Iwaki, T. & Yasukata, T. (2013). Eur. J. Med. Chem. 69, 262–277. [DOI] [PubMed]
  10. Yang, M., Odelberg, S. J., Tong, Z., Li, D. Y. & Looper, R. E. (2013). Tetrahedron, 69, 5744–5750. [DOI] [PMC free article] [PubMed]
  11. Zhang, D., Debnath, B., Yu, S., Sanchez, T. W., Christ, F., Liu, Y., Debyser, Z., Neamati, N. & Zhao, G. (2014). Bioorg. Med. Chem. 22, 5446–5453. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989014027431/su5043sup1.cif

e-71-00o60-sup1.cif (319.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014027431/su5043Isup2.hkl

e-71-00o60-Isup2.hkl (85.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014027431/su5043Isup3.cml

. DOI: 10.1107/S2056989014027431/su5043fig1.tif

The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

a . DOI: 10.1107/S2056989014027431/su5043fig2.tif

A projection of the crystal packing of the title compound, along the a axis. Hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity).

CCDC reference: 1039538

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES