Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 1;71(Pt 1):o56–o57. doi: 10.1107/S2056989014027133

Crystal structure of N-(propan-2-yl­carbamo­thio­yl)benzamide

Jerry P Jasinski a, Mehmet Akkurt b, Shaaban K Mohamed c,d, Mohamed A Gad e, Mustafa R Albayati f,*
PMCID: PMC4331893  PMID: 25705507

Abstract

In the crystal structure of the title compound, C11H14N2OS, the six atoms of the central C2N2OS residue are coplanar (r.m.s. deviation = 0.002 Å), which facilitates the formation of an intra­molecular N—H⋯O hydrogen bond, which closes an S(6) loop. The terminal phenyl ring is inclined with respect to the central plane [dihedral angle = 42.10 (6)°]. The most prominent feature of the crystal packing is the formation of {⋯HNCS}2 synthons resulting in centrosymmetric dimers.

Keywords: crystal structure, thio­urea, conformation, hydrogen bonding

Related literature  

For use of thio­ureas as building blocks in the synthesis of various organic compounds, see: Burgeson et al. (2012); Vega-Pérez et al. (2012); Yao et al. (2012); Shantharam et al. (2013); Yang et al. (2013). For use of thio­urea-containing compounds in medicinal applications, see: Rodriguez-Fernandez et al. (2005); Rauf et al. (2012).graphic file with name e-71-00o56-scheme1.jpg

Experimental  

Crystal data  

  • C11H14N2OS

  • M r = 222.30

  • Monoclinic, Inline graphic

  • a = 11.2147 (4) Å

  • b = 5.3988 (2) Å

  • c = 19.6834 (7) Å

  • β = 102.031 (4)°

  • V = 1165.57 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.27 mm−1

  • T = 293 K

  • 0.28 × 0.22 × 0.18 mm

Data collection  

  • Agilent Xcalibur, Eos, Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) T min = 0.828, T max = 1.000

  • 3844 measured reflections

  • 2189 independent reflections

  • 1944 reflections with I > 2σ(I)

  • R int = 0.025

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.146

  • S = 1.08

  • 2189 reflections

  • 146 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2014 (Gruene et al., 2014); program(s) used to refine structure: SHELXL2014 (Gruene et al., 2014); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989014027133/tk5351sup1.cif

e-71-00o56-sup1.cif (20.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014027133/tk5351Isup2.hkl

e-71-00o56-Isup2.hkl (120.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014027133/tk5351Isup3.cml

. DOI: 10.1107/S2056989014027133/tk5351fig1.tif

Perspective view of the title mol­ecule with atom labeling scheme and 50% probability ellipsoids.

b . DOI: 10.1107/S2056989014027133/tk5351fig2.tif

Packing viewed down the b axis showing stacks of pairs of mol­ecules connected by N—H⋯S inter­actions.

CCDC reference: 1038725

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N1H1NS1i 0.81(2) 2.66(2) 3.4439(19) 165(2)
N2H2NO1 0.87(2) 2.00(3) 2.662(2) 132(2)

Symmetry code: (i) Inline graphic.

Acknowledgments

JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer. SKM would like to thank Keene State College for providing the X-ray data and Manchester Metropolitan University for supporting this study.

supplementary crystallographic information

S1. Structural commentary

Compounds containing thio­urea linkage are very useful building blocks for the synthesis of a wide range of multiheterocyclic and macromolecular compounds. Thio­ureas have proved to be useful substances in drug research in recent years (Burgeson et al., 2012; Vega-Pérez et al., 2012; Yao et al., 2012; Shantharam et al., 2013; Yang et al., 2013). Symmetrical and unsymmetrical thio­ureas have shown anti-fungal activity against the plant pathogens like Penicillium expansum and Fusarium oxysporum (Rodriguez-Fernandez et al., 2005). Also, 1,3-di­alkyl or di­aryl thio­ureas exhibited significant anti-fungal activity against Pyricularia oryzae and Drechslera oryzae (Rauf et al., 2012). In light of this, and following to our on-going study in synthesis of bio-active molecules, we report here the synthesis and crystal structure of the title compound.

In the structure of the title compound, Fig. 1, intra­molecular N—H···O and inter­molecular N—H···S inter­actions are noted (Table 1).

S2. Synthesis and crystallization

Freshly prepared benzoyl chloride 5 ml (0.043 mol) was added drop wise to a solution of 3.2 g (0.042 mol) of ammonium thio­cyanate in 20 ml dry acetone with stirring. The reaction mixture was refluxed for 3 h. The obtained solid precipitate ammonium chloride was filtered off. The formed benzoyl iso­thio­cyanate in the filtrate was added to a solution of 3.1 ml (0.0425 mol) of 2-amino-iso­propane in 20 ml dry acetone. The reaction mixture was heated under reflux for 5 h, then poured into a beaker containing some ice cubes. The resulting precipitate was collected by filtration, washed several times with cold ethanol/water and purified by recrystallization from ethanol/di­chloro­methane mixture (1:1). Yield (63%); colourless solid, m.p 418 K.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.93 to 0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2–1.5Ueq(C). The hydrogen atoms attached to N1 and N2 were found from difference Fourier maps and were refined with the distance contratin N—H = 0.86±0.02 Å with unrestrained Uiso.

Figures

Fig. 1.

Fig. 1.

Perspective view of the title molecule with atom labeling scheme and 50% probability ellipsoids.

Fig. 2.

Fig. 2.

Packing viewed down the b axis showing stacks of pairs of molecules connected by N—H···S interactions.

Crystal data

C11H14N2OS F(000) = 472
Mr = 222.30 Dx = 1.267 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybc Cell parameters from 1804 reflections
a = 11.2147 (4) Å θ = 4.0–71.4°
b = 5.3988 (2) Å µ = 2.27 mm1
c = 19.6834 (7) Å T = 293 K
β = 102.031 (4)° Prism, colourless
V = 1165.57 (7) Å3 0.28 × 0.22 × 0.18 mm
Z = 4

Data collection

Agilent Xcalibur, Eos, Gemini diffractometer 2189 independent reflections
Radiation source: Enhance (Cu) X-ray Source 1944 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.025
Detector resolution: 16.0416 pixels mm-1 θmax = 71.3°, θmin = 4.0°
ω scans h = −12→13
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) k = −6→5
Tmin = 0.828, Tmax = 1.000 l = −18→24
3844 measured reflections

Refinement

Refinement on F2 2 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.049 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.146 w = 1/[σ2(Fo2) + (0.0871P)2 + 0.3862P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max < 0.001
2189 reflections Δρmax = 0.37 e Å3
146 parameters Δρmin = −0.34 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.60730 (5) 0.80543 (14) 0.08368 (3) 0.0464 (2)
O1 0.86531 (13) 1.0046 (3) −0.05679 (8) 0.0392 (5)
N1 0.69070 (16) 1.0345 (3) −0.01498 (9) 0.0321 (5)
N2 0.82704 (16) 0.7717 (3) 0.05595 (9) 0.0337 (5)
C1 0.63795 (19) 1.4665 (4) −0.10695 (11) 0.0334 (6)
C2 0.5930 (2) 1.6272 (4) −0.16095 (12) 0.0392 (6)
C3 0.6171 (2) 1.5865 (4) −0.22650 (11) 0.0414 (7)
C4 0.6865 (2) 1.3853 (5) −0.23779 (11) 0.0402 (7)
C5 0.73328 (19) 1.2248 (4) −0.18386 (11) 0.0342 (6)
C6 0.70827 (17) 1.2641 (4) −0.11803 (10) 0.0293 (5)
C7 0.76319 (18) 1.0900 (4) −0.06135 (10) 0.0310 (6)
C8 0.71668 (19) 0.8697 (4) 0.04084 (10) 0.0322 (6)
C9 0.8684 (2) 0.5923 (4) 0.11200 (11) 0.0389 (7)
C10 0.9666 (2) 0.4305 (4) 0.09293 (13) 0.0452 (7)
C11 0.9154 (3) 0.7308 (6) 0.17988 (13) 0.0592 (9)
H1 0.62120 1.49370 −0.06320 0.0400*
H1N 0.6216 (16) 1.085 (4) −0.0236 (11) 0.022 (5)*
H2 0.54640 1.76300 −0.15340 0.0470*
H2N 0.880 (2) 0.814 (5) 0.0317 (14) 0.048 (8)*
H3 0.58660 1.69470 −0.26270 0.0500*
H4 0.70190 1.35740 −0.28180 0.0480*
H5 0.78120 1.09110 −0.19140 0.0410*
H9 0.79950 0.48790 0.11730 0.0470*
H10A 0.93400 0.34290 0.05070 0.0680*
H10B 0.99470 0.31390 0.12960 0.0680*
H10C 1.03360 0.53220 0.08640 0.0680*
H11A 0.98180 0.83660 0.17480 0.0890*
H11B 0.94320 0.61370 0.21650 0.0890*
H11C 0.85090 0.82920 0.19110 0.0890*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0297 (3) 0.0743 (5) 0.0364 (3) 0.0061 (2) 0.0096 (2) 0.0129 (3)
O1 0.0309 (8) 0.0465 (9) 0.0415 (8) 0.0072 (6) 0.0106 (6) 0.0113 (7)
N1 0.0278 (8) 0.0390 (9) 0.0293 (8) 0.0046 (7) 0.0056 (6) 0.0054 (7)
N2 0.0306 (9) 0.0383 (10) 0.0314 (9) 0.0010 (7) 0.0046 (7) 0.0076 (7)
C1 0.0350 (10) 0.0309 (10) 0.0331 (10) −0.0033 (8) 0.0041 (8) −0.0023 (8)
C2 0.0400 (11) 0.0299 (10) 0.0448 (12) −0.0012 (9) 0.0019 (9) 0.0025 (9)
C3 0.0418 (12) 0.0405 (12) 0.0377 (11) −0.0059 (9) −0.0014 (9) 0.0124 (9)
C4 0.0369 (11) 0.0544 (14) 0.0291 (10) −0.0081 (10) 0.0064 (8) 0.0062 (9)
C5 0.0284 (10) 0.0408 (11) 0.0341 (10) −0.0027 (8) 0.0080 (8) 0.0032 (8)
C6 0.0260 (9) 0.0304 (9) 0.0300 (9) −0.0055 (7) 0.0022 (7) 0.0023 (8)
C7 0.0321 (10) 0.0314 (10) 0.0286 (9) −0.0038 (8) 0.0043 (7) −0.0007 (8)
C8 0.0336 (10) 0.0363 (10) 0.0255 (9) −0.0020 (8) 0.0033 (7) −0.0004 (8)
C9 0.0367 (11) 0.0412 (12) 0.0379 (11) 0.0022 (9) 0.0059 (9) 0.0114 (9)
C10 0.0487 (13) 0.0347 (11) 0.0506 (13) 0.0075 (10) 0.0065 (10) 0.0043 (10)
C11 0.0607 (16) 0.079 (2) 0.0334 (12) 0.0280 (14) −0.0003 (11) 0.0010 (12)

Geometric parameters (Å, º)

S1—C8 1.664 (2) C9—C11 1.526 (3)
O1—C7 1.220 (3) C9—C10 1.513 (3)
N1—C7 1.376 (3) C1—H1 0.9300
N1—C8 1.397 (3) C2—H2 0.9300
N2—C8 1.322 (3) C3—H3 0.9300
N2—C9 1.469 (3) C4—H4 0.9300
C1—C2 1.383 (3) C5—H5 0.9300
C1—C6 1.391 (3) C9—H9 0.9800
N1—H1N 0.806 (19) C10—H10A 0.9600
N2—H2N 0.87 (2) C10—H10B 0.9600
C2—C3 1.390 (3) C10—H10C 0.9600
C3—C4 1.381 (3) C11—H11A 0.9600
C4—C5 1.386 (3) C11—H11B 0.9600
C5—C6 1.398 (3) C11—H11C 0.9600
C6—C7 1.490 (3)
C7—N1—C8 127.26 (18) C6—C1—H1 120.00
C8—N2—C9 124.57 (18) C1—C2—H2 120.00
C2—C1—C6 120.0 (2) C3—C2—H2 120.00
C7—N1—H1N 117.5 (15) C2—C3—H3 120.00
C8—N1—H1N 114.5 (15) C4—C3—H3 120.00
C1—C2—C3 120.3 (2) C3—C4—H4 120.00
C8—N2—H2N 119.2 (17) C5—C4—H4 120.00
C9—N2—H2N 116.2 (17) C4—C5—H5 120.00
C2—C3—C4 119.9 (2) C6—C5—H5 120.00
C3—C4—C5 120.3 (2) N2—C9—H9 109.00
C4—C5—C6 119.9 (2) C10—C9—H9 109.00
C1—C6—C7 122.51 (18) C11—C9—H9 109.00
C5—C6—C7 117.82 (18) C9—C10—H10A 109.00
C1—C6—C5 119.63 (19) C9—C10—H10B 110.00
O1—C7—N1 122.96 (19) C9—C10—H10C 109.00
O1—C7—C6 121.90 (18) H10A—C10—H10B 110.00
N1—C7—C6 115.14 (17) H10A—C10—H10C 109.00
S1—C8—N1 118.47 (16) H10B—C10—H10C 109.00
S1—C8—N2 123.87 (16) C9—C11—H11A 110.00
N1—C8—N2 117.65 (19) C9—C11—H11B 109.00
N2—C9—C11 109.39 (19) C9—C11—H11C 109.00
C10—C9—C11 111.3 (2) H11A—C11—H11B 109.00
N2—C9—C10 109.06 (18) H11A—C11—H11C 109.00
C2—C1—H1 120.00 H11B—C11—H11C 110.00
C7—N1—C8—N2 7.1 (3) C2—C1—C6—C7 177.6 (2)
C7—N1—C8—S1 −172.18 (17) C1—C2—C3—C4 −0.2 (3)
C8—N1—C7—O1 −3.3 (3) C2—C3—C4—C5 −0.6 (3)
C8—N1—C7—C6 176.95 (19) C3—C4—C5—C6 1.2 (3)
C9—N2—C8—S1 0.4 (3) C4—C5—C6—C7 −178.5 (2)
C9—N2—C8—N1 −178.83 (18) C4—C5—C6—C1 −0.9 (3)
C8—N2—C9—C10 151.8 (2) C1—C6—C7—O1 −140.9 (2)
C8—N2—C9—C11 −86.2 (3) C5—C6—C7—O1 36.7 (3)
C6—C1—C2—C3 0.4 (3) C5—C6—C7—N1 −143.55 (19)
C2—C1—C6—C5 0.1 (3) C1—C6—C7—N1 38.9 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N···S1i 0.81 (2) 2.66 (2) 3.4439 (19) 165 (2)
N2—H2N···O1 0.87 (2) 2.00 (3) 2.662 (2) 132 (2)

Symmetry code: (i) −x+1, −y+2, −z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: TK5351).

References

  1. Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.
  2. Burgeson, J. R., Moore, A. L., Boutilier, J. K., Cerruti, N. R., Gharaibeh, D. N., Lovejoy, C. E., Amberg, S. M., Hruby, D. E., Tyavanagimatt, S. R., Allen, R. D. & Dai, D. (2012). Bioorg. Med. Chem. Lett. 22, 4263–4272. [DOI] [PubMed]
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Gruene, T., Hahn, H. W., Luebben, A. V., Meilleur, F. & Sheldrick, G. M. (2014). J. Appl. Cryst. 47, 462–466. [DOI] [PMC free article] [PubMed]
  5. Rauf, M., Ebihara, M., Badshah, A. & Imtiaz-ud-Din (2012). Acta Cryst. E68, o119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Rodríguez-Fernández, E., Manzano, J. L., Benito, J. J., Hermosa, R., Monte, E. & Criado, J. J. (2005). J. Inorg. Biochem. 99, 1558–1572. [DOI] [PubMed]
  7. Shantharam, C. S., Suyoga Vardhan, D. M., Suhas, R., Sridhara, M. B. & Gowda, D. C. (2013). Eur. J. Med. Chem. 60, 325–332. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Vega-Pérez, J. M., Periñán, I., Argandoña, M., Vega-Holm, M., Palo-Nieto, C., Burgos-Morón, E., López-Lázaro, M., Vargas, C., Nieto, J. J. & Iglesias-Guerra, F. (2012). Eur. J. Med. Chem. 58, 591–612. [DOI] [PubMed]
  10. Yang, W., Hu, Y., Yang, Y. S., Zhang, F., Zhang, Y. B., Wang, X. L., Tang, J. F., Zhong, W. Q. & Zhu, H. L. (2013). Bioorg. Med. Chem. 21, 1050–1063. [DOI] [PubMed]
  11. Yao, J., Chen, J., He, Z., Sun, W. & Xu, W. (2012). Bioorg. Med. Chem. 20, 2923–2929. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989014027133/tk5351sup1.cif

e-71-00o56-sup1.cif (20.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014027133/tk5351Isup2.hkl

e-71-00o56-Isup2.hkl (120.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014027133/tk5351Isup3.cml

. DOI: 10.1107/S2056989014027133/tk5351fig1.tif

Perspective view of the title mol­ecule with atom labeling scheme and 50% probability ellipsoids.

b . DOI: 10.1107/S2056989014027133/tk5351fig2.tif

Packing viewed down the b axis showing stacks of pairs of mol­ecules connected by N—H⋯S inter­actions.

CCDC reference: 1038725

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES