Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 1;71(Pt 1):12–15. doi: 10.1107/S2056989014025936

Crystal structures of 2-benzyl­amino-4-(4-bromo­phen­yl)-6,7,8,9-tetra­hydro-5H-cyclo­hepta­[b]pyridine-3-carbo­nitrile and 2-benzyl­amino-4-(4-chloro­phen­yl)-6,7,8,9-tetra­hydro-5H-cyclo­hepta[b]pyridine-3-carbo­nitrile

R A Nagalakshmi a, J Suresh a, S Maharani b, R Ranjith Kumar b, P L Nilantha Lakshman c,*
PMCID: PMC4331894  PMID: 25705438

In two cyclo­hepta­[b]pyridine-3-carbo­nitrile derivatives, the cyclo­heptane ring adopts a half-chair conformation. In the crystals of both compounds, pairs of N—H⋯Nnitrile hydrogen bonds link the mol­ecules, forming inversion dimers with Inline graphic(12) ring motifs.

Keywords: crystal structure, cyclo­hepta­[b]pyridine, carbo­nitrile, hydrogen bonding, π–π inter­actions

Abstract

In the title compounds, C24H22BrN3, (I), and C24H22ClN3, (II), the 2-amino­pyridine ring is fused with a cyclo­heptane ring, which adopts a half-chair conformation. The planes of the phenyl and benzene rings are inclined to that of the central pyridine ring [r.m.s. deviations = 0.0083 (1) and 0.0093 (1) Å for (I) and (II), respectively] by 62.47 (17) and 72.51 (14)°, respectively, in (I), and by 71.44 (9) and 54.90 (8)°, respectively, in (II). The planes of the aromatic rings are inclined to one another by 53.82 (17)° in (I) and by 58.04 (9)° in (II). In the crystals of both (I) and (II), pairs of N—H⋯Nnitrile hydrogen bonds link the mol­ecules, forming inversion dimers with R 2 2(12) ring motifs. In (I), the resulting dimers are connected through C—H⋯Br hydrogen bonds, forming sheets parallel to (10-1), and π–π inter­actions [inter-centroid distance = 3.7821 (16) Å] involving inversion-related pyridine rings, forming a three-dimensional network. In (II), the resulting dimers are connected through π–π inter­actions [inter-centroid distance = 3.771 (2) Å] involving inversion-related pyridine rings, forming a two-dimensional network lying parallel to (001).

Chemical context  

The heterocyclic skeleton containing a nitro­gen atom is the basis of many essential pharmaceuticals and of many physiologically active natural products. Mol­ecules containing heterocyclic substructures continue to be attractive targets for synthesis since they often exhibit diverse and important biological properties. Pyridine is used in the pharmaceutical industry as a raw material for various drugs, vitamins and fungicides, and as a solvent (Shinkai et al., 2000; Jansen et al., 2001; Amr et al., 2006). Pyridines are also omnipresent in medicaments and in agrochemicals (Tomlin, 1994). Pyridine derivatives have occupied a unique position in medicinal chemistry. Among them, 2-amino-3-cyano­pyridines have been identified as IKK-β inhibitors (Murata et al., 2003). Many fused cyano­pyridines have also been shown to have a wide spectrum of biological activity (Boschelli et al., 2004). Our inter­est in the preparation of pharmacologically active 3-cyano­pyridine compounds led us to synthesize the title compounds and we report herein on their crystal structures.graphic file with name e-71-00012-scheme1.jpg

Structural commentary  

The mol­ecular structures of the title compounds, (I) and (II), are shown in Figs. 1 and 2, respectively. The bromo derivative (I), crystallizes in the monoclinic space group P21/n while the chloro derivative (II), crystallizes in the triclinic space group P Inline graphic.

Figure 1.

Figure 1

The mol­ecular structure of compound (I), showing 50% probability displacement ellipsoids and the atom labelling.

Figure 2.

Figure 2

The mol­ecular structure of (II), showing 50% probability displacement ellipsoids and the atom labelling.

In both compounds, the pyridine ring is connected to a benzene ring by a –CH2—NH2– chain, as found in a similar structure N 6-(4-fluoro­benz­yl)-3-nitro­pyridine-2,6-di­amine (Ge & Qian, 2011). As expected, the pyridine ring (C2–C6/N3) is planar with r.m.s. deviations of 0.0083 and 0.0093 Å in compounds (I) and (II), respectively. In both compounds, the cyclo­heptane ring adopts a half-chair conformation, with puckering parameters Q2 = 0.415 (3) Å, ϕ2 = 310.1 (4)° and Q3 = 0.637 (3) Å and ϕ3 = 283.4 (3)° for compound (I) and Q2 = 0.475 (2) Å, ϕ2 = 310.3 (2)° and Q3 = 0.635 (2) Å and ϕ3 = 283.58 (17)° for compound (II). The amine N atom, N2, attached to the pyridine ring (N3/C2–C6) deviates by only 0.0107 (1) and 0.0073 (1) Å from the ring plane in (I) and (II), respectively. Steric hindrance rotates the benzene ring (C31–C36) out of the plane of the central pyridine ring by 72.51 (14)° in compound (I) and by only 54.90 (8)° in compound (II). The benzene ring is inclined to the phenyl ring (C22–C27) by 53.82 (17) in (I) and by 58.04 (9)° in (II).

Supra­molecular features  

In the crystal of (I), mol­ecules are linked by pairs of N—H⋯Nnitrile hydrogen bonds, forming inversion dimers with Inline graphic(12) ring motifs (Table 1 and Fig. 3). The resulting dimers are connected through C—H⋯Br hydrogen bonds, forming sheets lying parallel to (10Inline graphic). The sheets are connected by weak π–π stacking inter­actions involving adjacent inversion-related pyridine rings with a centroid-to-centroid distance of 3.7710 (7) Å, as shown in Fig. 3. These inter­actions lead to the formation of a three-dimensional network.

Table 1. Hydrogen-bond geometry (, ) for (I) .

DHA DH HA D A DHA
N2H2N1i 0.86 2.28 3.010(3) 143
C21H21BBr1ii 0.97 2.90 3.703(3) 141

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 3.

Figure 3

Crystal packing diagram of compound (I), viewed along the b axis. Hydrogen bonds (see Table 1 for details) and π–π inter­actions are shown as dashed lines (centroids are shown as small circles). H atoms not involved in hydrogen bonding have been omitted for clarity.

In the crystal of (II), mol­ecules are also linked by pairs of N—H⋯Nnitrile hydrogen bonds, forming inversion dimers with Inline graphic(12) ring motifs (Table 2 and Fig. 4). The dimers are connected through weak π–π inter­actions involving inversion-related pyridine rings with a centroid-to-centroid distance of 3.7818 (2) Å (Fig. 4). The resulting structure is a two-dimensional network lying parallel to (001).

Table 2. Hydrogen-bond geometry (, ) for (II) .

DHA DH HA D A DHA
N2H2N1i 0.86 2.26 3.007(2) 145

Symmetry code: (i) Inline graphic.

Figure 4.

Figure 4

Crystal packing diagram of compound (II), viewed along the b axis. Hydrogen bonds (see Table 2 for details) and π–π inter­actions are shown as dashed lines (centroids are shown as small circles). H atoms not involved in hydrogen bonding have been omitted for clarity.

Synthesis and crystallization  

Compounds (I) and (II) were prepared in a similar manner using 4-bromo aldehyde (1 mmol) for compound (I) and 4-chloro aldehyde (1 mmol) for compound (II). A mixture of cyclo­hepta­none (1 mmol), aromatic aldehyde (1 mmol), malono­nitrile (1 mmol) and benzyl­amine (1mmol) were taken in ethanol (10 ml) to which p-TSA (p-toluene­sulfonic acid) (1.0 mmol) was added. The reaction mixture was heated under reflux for 2–3 h. On completion of the reaction, verified by thin-layer chromatography (TLC), the mixture was poured into crushed ice and extracted with ethyl acetate. The excess solvent was removed under vacuum and the residue was subjected to column chromatography using a petroleum ether/ethyl acetate mixture (97:3 v/v) as eluent to afford the pure products. They were recrystallized from ethyl acetate, giving colourless crystals of compounds (I) [m.p. 417 K; yield 74%] and (II) [m.p. 397 K; yield 75%].

Database survey  

A similar structure reported in the literature, 2-(4-bromophen­yl)-4-(4-meth­oxy­phen­yl)-6,7,8,9-tetra­hydro-5H-cyclohepta­[b]pyridine (Çelik et al., 2013) also has a chair conformation of the cyclo­heptane ring and a planar conformation of the pyridine ring, as found for (I) and (II). In compounds (I) and (II) the C—N bond lengths in the –CH2—NH2– chain, viz. C6—N2 and C21—N2, are 1.350 (3) and 1.441 (3) Å, respectively, in (I) and 1.354 (2) and 1.442 (2) Å, respectively, in (II). These distances are similar to those reported for N 6-(4-fluoro­benz­yl)-3-nitro­pyridine-2,6-di­amine (Ge & Qian, 2011), viz. 1.341 (3) and 1.454 (3) Å, respectively.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. The NH and C-bound H atoms were placed in calculated positions and allowed to ride on their carrier atoms: N—H = 0.86 Å and C—H = 0.93–0.97 Å with U iso(H) = 1.5U eq(C) for methyl H atoms and = 1.2U eq(N,C) for other H atoms.

Table 3. Experimental details.

  (I) (II)
Crystal data
Chemical formula C24H22BrN3 C24H22ClN3
M r 432.35 387.89
Crystal system, space group Monoclinic, P21/n Triclinic, P Inline graphic
Temperature (K) 293 293
a, b, c () 8.9710(3), 9.3794(4), 24.9788(9) 9.002(5), 10.097(5), 11.856(5)
, , () 90, 99.002(2), 90 94.939(5), 108.204(5), 101.272(5)
V (3) 2075.89(14) 991.3(8)
Z 4 2
Radiation type Mo K Mo K
(mm1) 1.99 0.21
Crystal size (mm) 0.21 0.19 0.18 0.21 0.19 0.18
 
Data collection
Diffractometer Bruker Kappa APEXII Bruker Kappa APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2004) Multi-scan (SADABS; Bruker, 2004)
T min, T max 0.967, 0.974 0.967, 0.974
No. of measured, independent and observed [I > 2(I)] reflections 51599, 3863, 2927 24808, 3685, 2918
R int 0.040 0.026
(sin /)max (1) 0.606 0.606
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.041, 0.099, 1.10 0.037, 0.105, 1.05
No. of reflections 3863 3685
No. of parameters 253 253
No. of restraints 0 1
H-atom treatment H-atom parameters constrained H-atom parameters constrained
max, min (e 3) 0.42, 0.58 0.19, 0.33

Computer programs: APEX2 and SAINT (Bruker, 2004), SHELXS97, SHELXL97 and SHELXL2014 (Sheldrick, 2008) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S2056989014025936/su5027sup1.cif

e-71-00012-sup1.cif (2.9MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014025936/su5027Isup2.hkl

e-71-00012-Isup2.hkl (212KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989014025936/su5027IIsup3.hkl

e-71-00012-IIsup3.hkl (202.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014025936/su5027Isup4.cml

Supporting information file. DOI: 10.1107/S2056989014025936/su5027IIsup5.cml

CCDC references: 1036150, 1036149

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

JS and RAN thank the management of The Madura College (Autonomous), Madurai, for their encouragement and support. RRK thanks the University Grants Commission, New Delhi, for funds through the Major Research Project F. No. 42–242/2013 (SR).

supplementary crystallographic information

Crystal data

C24H22ClN3 Z = 2
Mr = 387.89 F(000) = 408
Triclinic, P1 Dx = 1.299 Mg m3
a = 9.002 (5) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.097 (5) Å Cell parameters from 2000 reflections
c = 11.856 (5) Å θ = 2–31°
α = 94.939 (5)° µ = 0.21 mm1
β = 108.204 (5)° T = 293 K
γ = 101.272 (5)° Block, colourless
V = 991.3 (8) Å3 0.21 × 0.19 × 0.18 mm

Data collection

Bruker Kappa APEXII diffractometer 2918 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.026
ω and φ scans θmax = 25.5°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −10→10
Tmin = 0.967, Tmax = 0.974 k = −12→12
24808 measured reflections l = −14→14
3685 independent reflections

Refinement

Refinement on F2 1 restraint
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037 H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0486P)2 + 0.3383P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
3685 reflections Δρmax = 0.19 e Å3
253 parameters Δρmin = −0.33 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.1170 (2) 0.47342 (18) 0.36822 (15) 0.0401 (4)
C2 0.24864 (18) 0.41014 (15) 0.38041 (14) 0.0327 (3)
C3 0.32569 (17) 0.40885 (15) 0.29430 (13) 0.0304 (3)
C4 0.44508 (17) 0.33539 (15) 0.30821 (14) 0.0321 (3)
C5 0.48147 (17) 0.26963 (15) 0.40915 (14) 0.0331 (3)
C6 0.29611 (17) 0.34315 (15) 0.48044 (14) 0.0320 (3)
C7 0.53288 (19) 0.32240 (17) 0.21988 (15) 0.0395 (4)
H7A 0.6478 0.3489 0.2631 0.047*
H7B 0.5074 0.3854 0.1633 0.047*
C8 0.4910 (2) 0.17808 (19) 0.14983 (16) 0.0477 (4)
H8A 0.3760 0.1411 0.1274 0.057*
H8B 0.5158 0.1839 0.0762 0.057*
C9 0.5782 (3) 0.0790 (2) 0.21741 (18) 0.0540 (5)
H9A 0.5446 −0.0086 0.1652 0.065*
H9B 0.6926 0.1124 0.2336 0.065*
C10 0.5522 (2) 0.05584 (19) 0.33498 (18) 0.0516 (5)
H10A 0.6113 −0.0104 0.3685 0.062*
H10B 0.4389 0.0163 0.3184 0.062*
C11 0.6037 (2) 0.18367 (19) 0.42923 (16) 0.0451 (4)
H11A 0.6223 0.1565 0.5081 0.054*
H11B 0.7046 0.2386 0.4285 0.054*
C21 0.2814 (2) 0.29636 (18) 0.67846 (15) 0.0416 (4)
H21A 0.3240 0.3740 0.7428 0.050*
H21B 0.3692 0.2540 0.6781 0.050*
C22 0.15556 (19) 0.19495 (16) 0.70552 (14) 0.0347 (3)
C23 0.1853 (2) 0.16979 (18) 0.82224 (16) 0.0449 (4)
H23 0.2789 0.2189 0.8823 0.054*
C24 0.0778 (3) 0.0727 (2) 0.85090 (19) 0.0589 (5)
H24 0.0996 0.0564 0.9298 0.071*
C25 −0.0605 (3) 0.0004 (2) 0.7635 (2) 0.0629 (6)
H25 −0.1323 −0.0658 0.7826 0.075*
C26 −0.0929 (2) 0.0256 (2) 0.6480 (2) 0.0617 (5)
H26 −0.1877 −0.0228 0.5886 0.074*
C27 0.0142 (2) 0.12280 (19) 0.61870 (17) 0.0503 (4)
H27 −0.0092 0.1396 0.5399 0.060*
C31 0.28089 (17) 0.49110 (15) 0.19592 (14) 0.0321 (3)
C32 0.2876 (2) 0.62890 (17) 0.22518 (15) 0.0396 (4)
H32 0.3223 0.6683 0.3056 0.047*
C33 0.2437 (2) 0.70820 (18) 0.13681 (17) 0.0459 (4)
H33 0.2491 0.8004 0.1574 0.055*
C34 0.19207 (19) 0.64947 (18) 0.01821 (16) 0.0428 (4)
C35 0.1840 (2) 0.51340 (19) −0.01437 (16) 0.0454 (4)
H35 0.1493 0.4748 −0.0950 0.055*
C36 0.2284 (2) 0.43515 (17) 0.07516 (15) 0.0395 (4)
H36 0.2231 0.3430 0.0540 0.047*
N1 0.0094 (2) 0.51850 (19) 0.36511 (16) 0.0616 (5)
N2 0.22527 (17) 0.34558 (15) 0.56572 (13) 0.0425 (3)
H2 0.1413 0.3786 0.5517 0.051*
N3 0.41191 (15) 0.27423 (13) 0.49346 (11) 0.0349 (3)
Cl1 0.13087 (7) 0.74901 (6) −0.09170 (5) 0.06667 (19)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0457 (9) 0.0481 (10) 0.0398 (9) 0.0242 (8) 0.0226 (7) 0.0144 (7)
C2 0.0336 (7) 0.0323 (8) 0.0369 (8) 0.0132 (6) 0.0151 (6) 0.0062 (6)
C3 0.0315 (7) 0.0271 (8) 0.0337 (8) 0.0084 (6) 0.0118 (6) 0.0038 (6)
C4 0.0294 (7) 0.0317 (8) 0.0382 (8) 0.0096 (6) 0.0141 (6) 0.0050 (6)
C5 0.0307 (7) 0.0328 (8) 0.0362 (8) 0.0110 (6) 0.0104 (6) 0.0028 (6)
C6 0.0328 (8) 0.0297 (8) 0.0369 (8) 0.0093 (6) 0.0153 (6) 0.0047 (6)
C7 0.0368 (8) 0.0452 (9) 0.0472 (9) 0.0170 (7) 0.0224 (7) 0.0144 (8)
C8 0.0523 (10) 0.0567 (11) 0.0441 (10) 0.0229 (9) 0.0246 (8) 0.0062 (8)
C9 0.0662 (12) 0.0486 (11) 0.0619 (12) 0.0279 (9) 0.0335 (10) 0.0071 (9)
C10 0.0646 (12) 0.0436 (10) 0.0629 (12) 0.0302 (9) 0.0318 (10) 0.0148 (9)
C11 0.0454 (9) 0.0549 (11) 0.0453 (10) 0.0294 (8) 0.0172 (8) 0.0146 (8)
C21 0.0435 (9) 0.0471 (10) 0.0368 (9) 0.0101 (8) 0.0168 (7) 0.0088 (7)
C22 0.0398 (8) 0.0331 (8) 0.0381 (8) 0.0154 (7) 0.0184 (7) 0.0066 (6)
C23 0.0513 (10) 0.0473 (10) 0.0398 (9) 0.0150 (8) 0.0171 (8) 0.0111 (8)
C24 0.0745 (14) 0.0608 (13) 0.0570 (12) 0.0228 (11) 0.0345 (11) 0.0288 (10)
C25 0.0589 (12) 0.0536 (12) 0.0923 (16) 0.0156 (10) 0.0404 (12) 0.0339 (12)
C26 0.0479 (11) 0.0535 (12) 0.0764 (14) 0.0035 (9) 0.0144 (10) 0.0156 (11)
C27 0.0498 (10) 0.0527 (11) 0.0455 (10) 0.0092 (9) 0.0127 (8) 0.0119 (8)
C31 0.0298 (7) 0.0341 (8) 0.0386 (8) 0.0116 (6) 0.0167 (6) 0.0094 (6)
C32 0.0413 (9) 0.0368 (9) 0.0408 (9) 0.0121 (7) 0.0123 (7) 0.0060 (7)
C33 0.0460 (9) 0.0332 (9) 0.0594 (11) 0.0111 (7) 0.0164 (8) 0.0136 (8)
C34 0.0384 (9) 0.0483 (10) 0.0500 (10) 0.0146 (8) 0.0195 (8) 0.0240 (8)
C35 0.0499 (10) 0.0558 (11) 0.0370 (9) 0.0171 (8) 0.0196 (8) 0.0115 (8)
C36 0.0457 (9) 0.0380 (9) 0.0416 (9) 0.0158 (7) 0.0206 (7) 0.0072 (7)
N1 0.0655 (10) 0.0839 (13) 0.0638 (11) 0.0493 (10) 0.0377 (9) 0.0285 (9)
N2 0.0472 (8) 0.0511 (9) 0.0466 (8) 0.0259 (7) 0.0281 (7) 0.0202 (7)
N3 0.0366 (7) 0.0351 (7) 0.0366 (7) 0.0145 (6) 0.0135 (6) 0.0072 (6)
Cl1 0.0687 (3) 0.0744 (4) 0.0699 (3) 0.0251 (3) 0.0271 (3) 0.0466 (3)

Geometric parameters (Å, º)

C1—N1 1.140 (2) C21—C22 1.505 (2)
C1—C2 1.428 (2) C21—H21A 0.9700
C2—C3 1.403 (2) C21—H21B 0.9700
C2—C6 1.408 (2) C22—C27 1.378 (3)
C3—C4 1.398 (2) C22—C23 1.381 (2)
C3—C31 1.489 (2) C23—C24 1.380 (3)
C4—C5 1.399 (2) C23—H23 0.9300
C4—C7 1.508 (2) C24—C25 1.366 (3)
C5—N3 1.337 (2) C24—H24 0.9300
C5—C11 1.505 (2) C25—C26 1.366 (3)
C6—N3 1.340 (2) C25—H25 0.9300
C6—N2 1.354 (2) C26—C27 1.382 (3)
C7—C8 1.529 (3) C26—H26 0.9300
C7—H7A 0.9700 C27—H27 0.9300
C7—H7B 0.9700 C31—C36 1.388 (2)
C8—C9 1.520 (3) C31—C32 1.389 (2)
C8—H8A 0.9700 C32—C33 1.380 (2)
C8—H8B 0.9700 C32—H32 0.9300
C9—C10 1.513 (3) C33—C34 1.373 (3)
C9—H9A 0.9700 C33—H33 0.9300
C9—H9B 0.9700 C34—C35 1.376 (3)
C10—C11 1.524 (3) C34—Cl1 1.7334 (17)
C10—H10A 0.9700 C35—C36 1.383 (2)
C10—H10B 0.9700 C35—H35 0.9300
C11—H11A 0.9700 C36—H36 0.9300
C11—H11B 0.9700 N2—H2 0.8600
C21—N2 1.442 (2)
N1—C1—C2 174.73 (18) N2—C21—C22 114.79 (14)
C3—C2—C6 120.15 (13) N2—C21—H21A 108.6
C3—C2—C1 122.07 (14) C22—C21—H21A 108.6
C6—C2—C1 117.73 (14) N2—C21—H21B 108.6
C4—C3—C2 118.39 (14) C22—C21—H21B 108.6
C4—C3—C31 123.49 (13) H21A—C21—H21B 107.5
C2—C3—C31 118.06 (13) C27—C22—C23 118.37 (16)
C3—C4—C5 117.26 (13) C27—C22—C21 123.14 (15)
C3—C4—C7 123.47 (14) C23—C22—C21 118.46 (15)
C5—C4—C7 119.26 (13) C24—C23—C22 120.88 (18)
N3—C5—C4 124.52 (14) C24—C23—H23 119.6
N3—C5—C11 114.38 (14) C22—C23—H23 119.6
C4—C5—C11 121.08 (14) C25—C24—C23 120.05 (19)
N3—C6—N2 118.13 (14) C25—C24—H24 120.0
N3—C6—C2 120.89 (13) C23—C24—H24 120.0
N2—C6—C2 120.98 (13) C24—C25—C26 119.80 (19)
C4—C7—C8 113.51 (14) C24—C25—H25 120.1
C4—C7—H7A 108.9 C26—C25—H25 120.1
C8—C7—H7A 108.9 C25—C26—C27 120.40 (19)
C4—C7—H7B 108.9 C25—C26—H26 119.8
C8—C7—H7B 108.9 C27—C26—H26 119.8
H7A—C7—H7B 107.7 C22—C27—C26 120.48 (18)
C9—C8—C7 114.77 (15) C22—C27—H27 119.8
C9—C8—H8A 108.6 C26—C27—H27 119.8
C7—C8—H8A 108.6 C36—C31—C32 118.14 (14)
C9—C8—H8B 108.6 C36—C31—C3 122.71 (14)
C7—C8—H8B 108.6 C32—C31—C3 119.13 (14)
H8A—C8—H8B 107.6 C33—C32—C31 121.05 (16)
C10—C9—C8 116.06 (15) C33—C32—H32 119.5
C10—C9—H9A 108.3 C31—C32—H32 119.5
C8—C9—H9A 108.3 C34—C33—C32 119.28 (16)
C10—C9—H9B 108.3 C34—C33—H33 120.4
C8—C9—H9B 108.3 C32—C33—H33 120.4
H9A—C9—H9B 107.4 C33—C34—C35 121.39 (16)
C9—C10—C11 115.01 (16) C33—C34—Cl1 118.72 (14)
C9—C10—H10A 108.5 C35—C34—Cl1 119.86 (14)
C11—C10—H10A 108.5 C34—C35—C36 118.70 (16)
C9—C10—H10B 108.5 C34—C35—H35 120.6
C11—C10—H10B 108.5 C36—C35—H35 120.6
H10A—C10—H10B 107.5 C35—C36—C31 121.43 (16)
C5—C11—C10 113.24 (15) C35—C36—H36 119.3
C5—C11—H11A 108.9 C31—C36—H36 119.3
C10—C11—H11A 108.9 C6—N2—C21 124.26 (14)
C5—C11—H11B 108.9 C6—N2—H2 117.9
C10—C11—H11B 108.9 C21—N2—H2 117.9
H11A—C11—H11B 107.7 C5—N3—C6 118.73 (13)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2···N1i 0.86 2.26 3.007 (2) 145

Symmetry code: (i) −x, −y+1, −z+1.

References

  1. Amr, A. G., Mohamed, A. M., Mohamed, S. F., Abdel-Hafez, N. A. & Hammam, A. G. (2006). Bioorg. Med. Chem. 14, 5481–5488. [DOI] [PubMed]
  2. Boschelli, D. H., Wu, B., Barrios Sosa, A. C., Durutlic, H., Ye, F., Raifeld, Y., Golas, J. M. & Boschelli, F. (2004). J. Med. Chem. 47, 6666–6668. [DOI] [PubMed]
  3. Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Çelik, Í., Akkurt, M., Gezegen, H. & Kazak, C. (2013). Acta Cryst. E69, o956. [DOI] [PMC free article] [PubMed]
  5. Ge, J. & Qian, X. (2011). Acta Cryst. E67, o1481. [DOI] [PMC free article] [PubMed]
  6. Jansen, B. A. J., van der Zwan, J., den Dulk, H., Brouwer, J. & Reedijk, J. (2001). J. Med. Chem. 44, 245–249. [DOI] [PubMed]
  7. Murata, T., Shimada, M., Sakakibara, S., Yoshino, T., Kadono, H., Masuda, T., Shimazaki, M., Shintani, T., Fuchikami, K., Sakai, K., Inbe, H., Takeshita, K., Niki, T., Umeda, M., Bacon, K. B., Ziegelbauer, K. B. & Lowinger, T. B. (2003). Bioorg. Med. Chem. Lett. 13, 913–918. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Shinkai, H., Ito, T., Iida, T., Kitao, Y., Yamada, H. & Uchida, I. (2000). J. Med. Chem. 43, 4667–4677. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Tomlin, C. (1994). The Pesticide Manual, 10th ed. Cambridge: British Crop Protection Council/Royal Society of Medicine.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S2056989014025936/su5027sup1.cif

e-71-00012-sup1.cif (2.9MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014025936/su5027Isup2.hkl

e-71-00012-Isup2.hkl (212KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989014025936/su5027IIsup3.hkl

e-71-00012-IIsup3.hkl (202.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014025936/su5027Isup4.cml

Supporting information file. DOI: 10.1107/S2056989014025936/su5027IIsup5.cml

CCDC references: 1036150, 1036149

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES