Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 1;71(Pt 1):45–47. doi: 10.1107/S2056989014026620

Crystal structure of cis-bis­(μ-β-alanine-κ2 O:O′)bis[tri­chlorido­rhenium(III)](ReRe) sesquihydrate

Alexander A Golichenko a,*, Konstantin V Domasevitch b, Dina E Kytova a, Alexander V Shtemenko a
PMCID: PMC4331895  PMID: 25705447

A dirhenium(III) cis-di­carboxyl­ate complex is reported, which is representative of a small class of zwitterionic ammonia­carboxyl­ato complexes involving a quadruple metal–metal bond.

Keywords: crystal structure, rhenium, cluster, β-alanine, zwitterionic ammonia­carboxyl­ato complex, quadruple metal–metal bond

Abstract

The structure of the title compound, [Re2Cl6(C3H7NO2)2]·1.5H2O, comprises a dinuclear complex cation [Re—Re = 2.2494 (3) Å] involving cis-oriented double carboxyl­ate bridges, four equatorial chloride ions and two weakly bonded chloride ligands in the axial positions at the two rhenium(III) atoms. In the crystal, two complex mol­ecules and two water mol­ecules constitute hydrogen-bonded dimers, while an extensive hydrogen-bonding network involving the groups of the zwitterionic ligand is important for generation of the framework. An additional partially occupied water molecule is disordered over two sets of sites about a symmetry centre with a site-occupancy ratio of 0.3:0.2.

Chemical context  

Investigations of complex compounds with multiple metal–metal bonds, which exhibit biological activity, generate great inter­est at the present stage of development of coordination chemistry (Jung & Lippard, 2007; Shtemenko et al., 2013). Binuclear clusters of rhenium(III) are the classical complexes with a unique quadruple metal–metal bond (Cotton et al., 2005; Golichenko & Shtemenko, 2006). In our previous studies, we have shown that these compounds can be used in medical practice as anti­tumor, anti­radical, and hepato- and nephro-protective substances with low toxicity (Dimitrov & Eastland, 1978; Shtemenko et al., 2007, 2008, 2009, 2013). Labile axial ligands and equatorial chloride groups are the reactive centres not only for other substances in vitro, but also in inter­actions with biological macromolecules, such as proteins, DNA, and others in vivo (Shtemenko et al., 2013). In this context, we present the synthesis and crystal structure of a new complex compound of dirhenium(III) with β-alanine as biologically active substance, which can exhibit anti­tumor activity (Shtemenko et al., 2009).graphic file with name e-71-00045-scheme1.jpg

Structural commentary  

It is well known that β-alanine and other amino acids are able to coordinate to a variety of transition metals (Korp et al., 1981; Shtemenko et al., 2009). The quadruple Re—Re bond [2.2494 (3) Å] is typical of related di­carboxyl­ato clusters (Cotton et al., 2005; Shtemenko et al., 2009). The octahedral coordination environment of each rhenium ion in the title compound (Fig. 1) also comprises two chloride anions and two oxygen atoms of zwitterionic alanine ligands. The distorted octa­hedral coordination of the metals is completed by weakly bonded chloride ions [Re1—Cl3 = 2.6766 (16) and Re2—Cl6 = 2.7501 (14) Å], in a trans-position to the Re—Re bond. This may be compared with the similar weak binding of N- or O-donors, which is characteristic of di­carboxyl­atodirhenium compounds (Bera et al., 2003; Shtemenko et al., 2009) and is even more appreciable for cationic tetra­carboxyl­atodirhenium species commonly accommodating a pair of chloride anions at both axial sites (Re–Cl = 2.48–2.52 Å; Shtemenko et al., 2001).

Figure 1.

Figure 1

The mol­ecular structure of the title complex, with displacement ellipsoids drawn at the 40% probability level. Solvent water mol­ecules have been omitted for clarity.

Supra­molecular features  

The title compound displays a three-dimensional structure dominated by weak hydrogen bonds of the O—H⋯Cl, N—H⋯Cl, C—H⋯O and C—H⋯Cl types (Table 1). The primary supra­molecular motif consists of centrosymmetric dimers (symmetry code: −x, −y + 1, −z) incorporating two complex moieties and two water mol­ecules (Fig. 2), with a typical hydrogen-bonding geometry [O⋯Cl = 3.342 (6) and 3.360 (6) Å], while an extensive hydrogen-bonding network involving the ammonium groups and chloride acceptors assembles the dimers into a three-dimensional framework. One of these N—H⋯Cl bonds is bifurcated and one is trifurcated (Table 1). It is worth noting that most of the N–H⋯Cl inter­actions are observed for the Cl3 and Cl6 acceptors. Such selectivity is likely predetermined by the steric accessibility and relative negative charge located at the Cl atoms, since these distal ‘axial’ chloride ligands Cl3 and Cl6 are the most underbonded and highly nucleophilic. The disordered water mol­ecules reside in the framework cages and adopt a series of short contacts, which may be attributed to weak hydrogen bonding [O⋯Cl = 3.07 (2)–3.42 (4) Å].

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
O5H1WCl2i 0.85 2.51 3.360(6) 174
O5H2WCl3ii 0.85 2.50 3.342(6) 174
N1H1NCl6iii 0.90 2.32 3.202(5) 167
N1H2NCl4iv 0.90 2.78 3.396(6) 127
N1H2NCl5iv 0.90 2.78 3.557(5) 145
N1H2NCl6iv 0.90 2.75 3.410(6) 131
N1H3NCl3i 0.90 2.34 3.223(5) 167
N2H4NCl6v 0.90 2.30 3.188(6) 172
N2H5NCl2vi 0.90 2.84 3.575(6) 140
N2H5NCl5vi 0.90 2.66 3.373(5) 137
N2H6NCl3ii 0.90 2.40 3.238(7) 156
C3H3AO5 0.98 2.54 3.253(9) 129
C2H2ACl2i 0.98 2.78 3.717(6) 160

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Figure 2.

Figure 2

The crystal structure of the title complex viewed down the a axis, with the C—H hydrogens and disordered water mol­ecules omitted for clarity. Dotted lines indicate hydrogen bonds involving the OH and NH groups. Note the assembly of the hydrogen-bonded dimers constituted by two complex mol­ecules and two water mol­ecules. [Symmetry codes: (ii) −x + 1, −y + 1, −z; (iii) x + Inline graphic, −y + Inline graphic, z + Inline graphic; (v) −x + Inline graphic, y + Inline graphic, −z + Inline graphic; (viii) −x, −y + 1, −z; (ix) −x + 1, −y + 1, −z + 1.]

Synthesis and crystallization  

1.00 g (1.25 mmol) of [β-AlaH]2Re2Cl8 was dissolved in 20 ml of aceto­nitrile and the solution was concentrated to half of the initial volume using a rotary evaporator. A new portion (10 ml) of the solvent was added and the solution was evaporated to half of the initial volume. This procedure was repeated five times. The dark-green crystals obtained were filtered, washed with two 5 ml portions of cold aceto­nitrile and diethyl ether and dried under vacuum at 353 K. The product (0.77 g) was recrystallized from acetone, yielding the title complex in 81% yield.

Refinement details  

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were refined using a riding model, with O—H = 0.85, N—H = 0.90, C—H = 0.98 Å, and with U iso(H) = 1.2U eq(C) or 1.5U eq(N,O). One of the solvate water mol­ecules is disordered over two unequal contributions, which are further disordered about an inversion centre. The refined partial occupancies for this oxygen atom (O6A and O6B) are 0.3 and 0.2, respectively. Both sites were refined anisotropically. The H atoms of the partially occupied water mol­ecule could not be located and were omitted from the final refinement.

Table 2. Experimental details.

Crystal data
Chemical formula [Re2Cl6(C3H7NO2)2]1.5H2O
M r 790.32
Crystal system, space group Monoclinic, P21/n
Temperature (K) 223
a, b, c () 8.2884(9), 17.4526(14), 13.2715(14)
() 107.838(3)
V (3) 1827.5(3)
Z 4
Radiation type Mo K
(mm1) 14.13
Crystal size (mm) 0.25 0.22 0.14
 
Data collection
Diffractometer Siemens SMART CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2008)
T min, T max 0.139, 0.267
No. of measured, independent and observed [I > 2(I)] reflections 11029, 4413, 4235
R int 0.027
(sin /)max (1) 0.665
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.031, 0.075, 1.26
No. of reflections 4413
No. of parameters 210
H-atom treatment H-atom parameters constrained
max, min (e 3) 1.70, 1.62

Computer programs: SMART and SAINT (Bruker, 2008), SHELXS97 and SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999) and WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989014026620/rz5142sup1.cif

e-71-00045-sup1.cif (26.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014026620/rz5142Isup2.hkl

e-71-00045-Isup2.hkl (211.9KB, hkl)

CCDC reference: 1037487

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a grant for Science Research (No. 0111U000111) from the Ministry of Education and Science of Ukraine. We also thank COST Action CM 1105 for supporting this study.

supplementary crystallographic information

Crystal data

[Re2Cl6(C3H7NO2)2]·1.5H2O F(000) = 1452
Mr = 790.32 Dx = 2.872 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 8.2884 (9) Å Cell parameters from 11029 reflections
b = 17.4526 (14) Å θ = 2.6–28.2°
c = 13.2715 (14) Å µ = 14.13 mm1
β = 107.838 (3)° T = 223 K
V = 1827.5 (3) Å3 Prism, green
Z = 4 0.25 × 0.22 × 0.14 mm

Data collection

Siemens SMART CCD area-detector diffractometer 4413 independent reflections
Radiation source: fine-focus sealed tube 4235 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.027
ω scans θmax = 28.2°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −10→11
Tmin = 0.139, Tmax = 0.267 k = −23→14
11029 measured reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075 H-atom parameters constrained
S = 1.26 w = 1/[σ2(Fo2) + (0.0324P)2 + 7.030P] where P = (Fo2 + 2Fc2)/3
4413 reflections (Δ/σ)max = 0.001
210 parameters Δρmax = 1.70 e Å3
0 restraints Δρmin = −1.62 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.One of the solvate water molecules is disordered over center of inversion. Moreover, judging by the high anisotropy of thermal motion for this oxygen atom, two contributions of the disorder were considered and the refined partial occupancy factors were 0.20 and 0.30. Both of this contributions were refined anisotropically. However, the hydrogen atoms were not added for this disordered molecule.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Re1 0.33803 (3) 0.336279 (13) 0.155287 (17) 0.01817 (7)
Re2 0.46372 (3) 0.229582 (13) 0.120550 (17) 0.01690 (7)
Cl1 0.31703 (18) 0.31409 (9) 0.32193 (11) 0.0244 (3)
Cl2 0.05470 (17) 0.30638 (10) 0.07595 (12) 0.0279 (3)
Cl3 0.2389 (2) 0.47984 (9) 0.17579 (14) 0.0334 (3)
Cl4 0.48355 (18) 0.15473 (8) 0.26858 (11) 0.0234 (3)
Cl5 0.23913 (18) 0.15472 (9) 0.02031 (11) 0.0245 (3)
Cl6 0.66636 (18) 0.12368 (9) 0.06428 (11) 0.0241 (3)
O1 0.5745 (5) 0.3823 (2) 0.2274 (3) 0.0223 (8)
O2 0.6952 (5) 0.2750 (2) 0.1966 (3) 0.0218 (8)
O3 0.3516 (5) 0.3841 (2) 0.0171 (3) 0.0235 (8)
O4 0.4770 (5) 0.2789 (2) −0.0169 (3) 0.0223 (8)
N1 1.0580 (6) 0.4837 (3) 0.3589 (4) 0.0244 (10)
H1N 1.1055 0.4574 0.4190 0.037*
H2N 1.0596 0.5341 0.3737 0.037*
H3N 1.1168 0.4753 0.3131 0.037*
N2 0.5515 (7) 0.3709 (4) −0.2897 (4) 0.0314 (12)
H4N 0.4435 0.3778 −0.3302 0.047*
H5N 0.6038 0.3386 −0.3225 0.047*
H6N 0.6058 0.4162 −0.2791 0.047*
C1 0.7059 (7) 0.3423 (3) 0.2338 (4) 0.0176 (10)
C2 0.8792 (7) 0.3729 (3) 0.2871 (5) 0.0202 (11)
H2A 0.9507 0.3637 0.2416 0.024*
H2B 0.9287 0.3451 0.3535 0.024*
C3 0.8795 (7) 0.4581 (3) 0.3108 (5) 0.0245 (12)
H3A 0.8269 0.4866 0.2454 0.029*
H3B 0.8143 0.4678 0.3599 0.029*
C4 0.4226 (7) 0.3459 (4) −0.0408 (5) 0.0209 (11)
C5 0.4335 (7) 0.3820 (4) −0.1409 (4) 0.0204 (11)
H5A 0.4735 0.4349 −0.1266 0.025*
H5B 0.3206 0.3832 −0.1932 0.025*
C6 0.5537 (8) 0.3375 (4) −0.1853 (5) 0.0281 (13)
H6A 0.6688 0.3399 −0.1357 0.034*
H6B 0.5191 0.2836 −0.1945 0.034*
O5 0.7596 (7) 0.4427 (4) 0.0542 (4) 0.0549 (16)
H1W 0.8330 0.4072 0.0644 0.082*
H2W 0.7539 0.4649 −0.0038 0.082*
O6B 0.464 (7) 0.497 (3) 0.458 (3) 0.072 (15) 0.20
O6A 0.472 (3) 0.4887 (13) 0.4049 (19) 0.051 (6) 0.30

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Re1 0.01700 (11) 0.01642 (12) 0.02398 (12) 0.00109 (8) 0.01056 (8) 0.00113 (8)
Re2 0.01678 (11) 0.01375 (12) 0.02137 (11) −0.00057 (8) 0.00761 (8) 0.00023 (8)
Cl1 0.0256 (6) 0.0265 (7) 0.0241 (6) −0.0002 (6) 0.0121 (5) 0.0022 (6)
Cl2 0.0179 (6) 0.0335 (8) 0.0326 (7) 0.0021 (6) 0.0080 (5) −0.0022 (6)
Cl3 0.0406 (8) 0.0206 (7) 0.0484 (9) 0.0069 (7) 0.0273 (7) 0.0041 (7)
Cl4 0.0268 (7) 0.0198 (7) 0.0249 (6) 0.0005 (5) 0.0097 (5) 0.0040 (5)
Cl5 0.0212 (6) 0.0259 (7) 0.0257 (6) −0.0053 (5) 0.0059 (5) −0.0044 (6)
Cl6 0.0268 (6) 0.0206 (7) 0.0254 (6) 0.0031 (6) 0.0089 (5) −0.0005 (5)
O1 0.0208 (18) 0.020 (2) 0.029 (2) −0.0041 (16) 0.0123 (16) −0.0047 (17)
O2 0.0180 (18) 0.018 (2) 0.028 (2) 0.0003 (16) 0.0055 (16) −0.0019 (16)
O3 0.0242 (19) 0.021 (2) 0.030 (2) 0.0042 (17) 0.0158 (17) 0.0039 (17)
O4 0.0220 (19) 0.021 (2) 0.026 (2) −0.0003 (17) 0.0108 (16) 0.0018 (17)
N1 0.029 (2) 0.020 (3) 0.026 (2) −0.009 (2) 0.010 (2) −0.001 (2)
N2 0.028 (3) 0.044 (4) 0.028 (3) 0.001 (3) 0.017 (2) 0.000 (2)
C1 0.020 (2) 0.016 (3) 0.019 (2) −0.003 (2) 0.009 (2) −0.003 (2)
C2 0.015 (2) 0.019 (3) 0.026 (3) 0.001 (2) 0.006 (2) −0.002 (2)
C3 0.024 (3) 0.013 (3) 0.035 (3) 0.001 (2) 0.007 (2) −0.004 (2)
C4 0.019 (2) 0.023 (3) 0.026 (3) −0.004 (2) 0.015 (2) −0.002 (2)
C5 0.021 (2) 0.023 (3) 0.022 (3) 0.002 (2) 0.013 (2) 0.007 (2)
C6 0.033 (3) 0.026 (3) 0.030 (3) 0.006 (3) 0.016 (3) 0.004 (3)
O5 0.051 (3) 0.074 (5) 0.044 (3) 0.020 (3) 0.023 (3) 0.025 (3)
O6B 0.10 (4) 0.05 (2) 0.08 (3) 0.03 (2) 0.05 (4) −0.01 (3)
O6A 0.064 (15) 0.023 (10) 0.057 (14) 0.003 (10) 0.003 (12) 0.003 (11)

Geometric parameters (Å, º)

Re1—O3 2.049 (4) N2—C6 1.498 (8)
Re1—O1 2.063 (4) N2—H4N 0.9000
Re1—Re2 2.2494 (3) N2—H5N 0.9000
Re1—Cl1 2.3037 (14) N2—H6N 0.9000
Re1—Cl2 2.3197 (14) C1—C2 1.492 (7)
Re1—Cl3 2.6766 (16) C2—C3 1.519 (8)
Re2—O2 2.035 (4) C2—H2A 0.9800
Re2—O4 2.050 (4) C2—H2B 0.9800
Re2—Cl4 2.3227 (14) C3—H3A 0.9800
Re2—Cl5 2.3291 (14) C3—H3B 0.9800
Re2—Cl6 2.7501 (14) C4—C5 1.498 (7)
O1—C1 1.273 (7) C5—C6 1.518 (8)
O2—C1 1.267 (7) C5—H5A 0.9800
O3—C4 1.288 (7) C5—H5B 0.9800
O4—C4 1.258 (7) C6—H6A 0.9800
N1—C3 1.490 (7) C6—H6B 0.9800
N1—H1N 0.9000 O5—H1W 0.8500
N1—H2N 0.9000 O5—H2W 0.8500
N1—H3N 0.9000
O3—Re1—O1 87.24 (17) H2N—N1—H3N 109.5
O3—Re1—Re2 89.88 (12) C6—N2—H4N 109.5
O1—Re1—Re2 89.05 (12) C6—N2—H5N 109.5
O3—Re1—Cl1 165.62 (13) H4N—N2—H5N 109.5
O1—Re1—Cl1 87.73 (12) C6—N2—H6N 109.5
Re2—Re1—Cl1 103.50 (4) H4N—N2—H6N 109.5
O3—Re1—Cl2 90.63 (13) H5N—N2—H6N 109.5
O1—Re1—Cl2 169.84 (13) O2—C1—O1 121.7 (5)
Re2—Re1—Cl2 100.88 (4) O2—C1—C2 117.3 (5)
Cl1—Re1—Cl2 91.96 (5) O1—C1—C2 121.0 (5)
O3—Re1—Cl3 79.19 (12) C1—C2—C3 112.9 (5)
O1—Re1—Cl3 82.31 (12) C1—C2—H2A 109.0
Re2—Re1—Cl3 166.33 (4) C3—C2—H2A 109.0
Cl1—Re1—Cl3 86.79 (5) C1—C2—H2B 109.0
Cl2—Re1—Cl3 87.54 (6) C3—C2—H2B 109.0
O2—Re2—O4 88.74 (17) H2A—C2—H2B 107.8
O2—Re2—Re1 90.07 (11) N1—C3—C2 108.8 (5)
O4—Re2—Re1 89.38 (12) N1—C3—H3A 109.9
O2—Re2—Cl4 89.33 (12) C2—C3—H3A 109.9
O4—Re2—Cl4 168.37 (12) N1—C3—H3B 109.9
Re1—Re2—Cl4 102.09 (4) C2—C3—H3B 109.9
O2—Re2—Cl5 165.67 (12) H3A—C3—H3B 108.3
O4—Re2—Cl5 88.78 (12) O4—C4—O3 121.6 (5)
Re1—Re2—Cl5 104.01 (4) O4—C4—C5 120.0 (5)
Cl4—Re2—Cl5 90.27 (5) O3—C4—C5 118.3 (5)
O2—Re2—Cl6 80.51 (12) C4—C5—C6 110.8 (5)
O4—Re2—Cl6 80.62 (12) C4—C5—H5A 109.5
Re1—Re2—Cl6 166.35 (3) C6—C5—H5A 109.5
Cl4—Re2—Cl6 87.75 (5) C4—C5—H5B 109.5
Cl5—Re2—Cl6 85.16 (5) C6—C5—H5B 109.5
C1—O1—Re1 119.3 (4) H5A—C5—H5B 108.1
C1—O2—Re2 119.8 (4) N2—C6—C5 109.7 (5)
C4—O3—Re1 118.9 (4) N2—C6—H6A 109.7
C4—O4—Re2 120.1 (4) C5—C6—H6A 109.7
C3—N1—H1N 109.5 N2—C6—H6B 109.7
C3—N1—H2N 109.5 C5—C6—H6B 109.7
H1N—N1—H2N 109.5 H6A—C6—H6B 108.2
C3—N1—H3N 109.5 H1W—O5—H2W 108.4
H1N—N1—H3N 109.5
O3—Re1—Re2—O2 89.01 (17) O4—Re2—O2—C1 86.9 (4)
O1—Re1—Re2—O2 1.77 (16) Re1—Re2—O2—C1 −2.5 (4)
Cl1—Re1—Re2—O2 −85.66 (12) Cl4—Re2—O2—C1 −104.6 (4)
Cl2—Re1—Re2—O2 179.63 (13) Cl5—Re2—O2—C1 166.9 (4)
Cl3—Re1—Re2—O2 52.4 (2) Cl6—Re2—O2—C1 167.6 (4)
O3—Re1—Re2—O4 0.28 (16) O1—Re1—O3—C4 87.3 (4)
O1—Re1—Re2—O4 −86.96 (16) Re2—Re1—O3—C4 −1.7 (4)
Cl1—Re1—Re2—O4 −174.40 (12) Cl1—Re1—O3—C4 157.0 (4)
Cl2—Re1—Re2—O4 90.90 (12) Cl2—Re1—O3—C4 −102.6 (4)
Cl3—Re1—Re2—O4 −36.4 (2) Cl3—Re1—O3—C4 170.0 (4)
O3—Re1—Re2—Cl4 178.34 (13) O2—Re2—O4—C4 −89.0 (4)
O1—Re1—Re2—Cl4 91.10 (12) Re1—Re2—O4—C4 1.1 (4)
Cl1—Re1—Re2—Cl4 3.67 (5) Cl4—Re2—O4—C4 −169.5 (5)
Cl2—Re1—Re2—Cl4 −91.04 (6) Cl5—Re2—O4—C4 105.2 (4)
Cl3—Re1—Re2—Cl4 141.70 (18) Cl6—Re2—O4—C4 −169.6 (4)
O3—Re1—Re2—Cl5 −88.31 (13) Re2—O2—C1—O1 1.8 (7)
O1—Re1—Re2—Cl5 −175.54 (12) Re2—O2—C1—C2 −179.0 (4)
Cl1—Re1—Re2—Cl5 97.02 (5) Re1—O1—C1—O2 0.3 (7)
Cl2—Re1—Re2—Cl5 2.31 (6) Re1—O1—C1—C2 −178.9 (4)
Cl3—Re1—Re2—Cl5 −124.95 (18) O2—C1—C2—C3 169.6 (5)
O3—Re1—Re2—Cl6 42.93 (18) O1—C1—C2—C3 −11.2 (8)
O1—Re1—Re2—Cl6 −44.31 (18) C1—C2—C3—N1 −177.3 (5)
Cl1—Re1—Re2—Cl6 −131.75 (14) Re2—O4—C4—O3 −2.8 (7)
Cl2—Re1—Re2—Cl6 133.55 (14) Re2—O4—C4—C5 179.6 (4)
Cl3—Re1—Re2—Cl6 6.3 (2) Re1—O3—C4—O4 3.1 (7)
O3—Re1—O1—C1 −91.7 (4) Re1—O3—C4—C5 −179.3 (4)
Re2—Re1—O1—C1 −1.8 (4) O4—C4—C5—C6 −15.0 (8)
Cl1—Re1—O1—C1 101.8 (4) O3—C4—C5—C6 167.2 (5)
Cl2—Re1—O1—C1 −169.8 (5) C4—C5—C6—N2 175.4 (5)
Cl3—Re1—O1—C1 −171.2 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O5—H1W···Cl2i 0.85 2.51 3.360 (6) 174
O5—H2W···Cl3ii 0.85 2.50 3.342 (6) 174
N1—H1N···Cl6iii 0.90 2.32 3.202 (5) 167
N1—H2N···Cl4iv 0.90 2.78 3.396 (6) 127
N1—H2N···Cl5iv 0.90 2.78 3.557 (5) 145
N1—H2N···Cl6iv 0.90 2.75 3.410 (6) 131
N1—H3N···Cl3i 0.90 2.34 3.223 (5) 167
N2—H4N···Cl6v 0.90 2.30 3.188 (6) 172
N2—H5N···Cl2vi 0.90 2.84 3.575 (6) 140
N2—H5N···Cl5vi 0.90 2.66 3.373 (5) 137
N2—H6N···Cl3ii 0.90 2.40 3.238 (7) 156
C3—H3A···O5 0.98 2.54 3.253 (9) 129
C2—H2A···Cl2i 0.98 2.78 3.717 (6) 160

Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y+1, −z; (iii) x+1/2, −y+1/2, z+1/2; (iv) −x+3/2, y+1/2, −z+1/2; (v) x−1/2, −y+1/2, z−1/2; (vi) x+1/2, −y+1/2, z−1/2.

References

  1. Bera, J. K., Vo, T.-T., Walton, R. A. & Dunbar, K. R. (2003). Polyhedron, 22, 3009–3014.
  2. Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2008). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cotton, F. A., Murillo, C. A. & Walton, R. A. (2005). Multiple Bonds between Metal Atoms, 3rd ed., pp. 271–376. New York: Springer Science and Business Media Inc.
  5. Dimitrov, N. V. & Eastland, G. W. (1978). Current Chemotherapy, edited by W. Siegenthaler & R. Luthy, Vol. 2, pp. 1319–1321. Washington, DC: American Society for Microbiology Publishing.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Golichenko, A. A. & Shtemenko, A. V. (2006). Russ. J. Coord. Chem. 32, 242–249.
  8. Jung, Y. & Lippard, S. J. (2007). Chem. Rev. 107, 1387–1407. [DOI] [PubMed]
  9. Korp, J. D., Bernal, I. & Bear, J. L. (1981). Inorg. Chim. Acta, 51, 1–7.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Shtemenko, N. I., Chifotides, H. T., Domasevitch, K. V., Golichenko, A. A., Babiy, S. A., Li, Z., Paramonova, K. V., Shtemenko, A. V. & Dunbar, K. R. (2013). J. Inorg. Biochem. 129, 127–134. [DOI] [PubMed]
  12. Shtemenko, N., Collery, P. & Shtemenko, A. (2007). Anticancer Res. 27, 2487–2492. [PubMed]
  13. Shtemenko, A. V., Collery, P., Shtemenko, N. I., Domasevitch, K. V., Zabitskaya, E. D. & Golichenko, A. A. (2009). Dalton Trans. pp. 5132–5136. [DOI] [PubMed]
  14. Shtemenko, A. V., Golichenko, A. A. & Domasevitch, K. V. (2001). Z. Naturforsch. Teil B, 56, 381–385.
  15. Shtemenko, A., Golichenko, A., Tretyak, S., Shtemenko, N. & Randarevich, M. (2008). Metal Ions in Biology and Medicine, Vol. 10, pp. 229–234. Paris: John Libbey Eurotext.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989014026620/rz5142sup1.cif

e-71-00045-sup1.cif (26.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014026620/rz5142Isup2.hkl

e-71-00045-Isup2.hkl (211.9KB, hkl)

CCDC reference: 1037487

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES